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Since the 21st Century Cures Act was signed into law in 2016, real-world data (RWD) and real-world evidence

(RWE) have attracted great interest from the healthcare ecosystem globally. The potential and capability of RWD/
RWE to inform regulatory decisions and clinical drug development have been extensively reviewed and discussed

in the literature. However, a comprehensive review of current applications of RWD/RWE in clinical pharmacology,
particularly from an industry perspective, is needed to inspire new insights and identify potential future opportunities
for clinical pharmacologists to utilize RWD/RWE to address key drug development questions. In this paper, we
review the RWD/RWE applications relevant to clinical pharmacology based on recent publications from member
companies in the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) RWD
Working Group, and discuss the future direction of RWE utilization from a clinical pharmacology perspective. A

comprehensive review of RWD/RWE use cases is provided and discussed in the following categories of application:
drug-drug interaction assessments, dose recommendation for patients with organ impairment, pediatric plan
development and study design, model-informed drug development (e.g., disease progression modeling), prognostic
and predictive biomarkers/factors identification, regulatory decisions support (e.g., label expansion), and synthetic/
external control generation for rare diseases. Additionally, we describe and discuss common sources of RWD to help
guide appropriate data selection to address questions pertaining to clinical pharmacology in drug development and

regulatory decision making.

Real-world data (RWD) and real-world evidence (RWE) have
gained broad attention in recent years, given their potential and
capability to inform clinical drug development and regulatory de-
cision making. Sources of RWD have evolved and expanded from
the traditional electronic health records (EHRs), medical and
pharmacy claims, disease and medical product registries, and ob-
servational clinical study data to include unstructured data sources
(e.g., physician notes processed by natural language processing),
novel data types (e.g., genomics data and diagnostic imaging),
and patient/individual-generated data from wearable devices and

social media.! RWE derived from RWD is considered a comple-
ment/supplement to the gold-standard randomized controlled
trials (RCTs), adding valuable features, such as greater patient
heterogeneity and long-term outcomes in a typical care setting.”
RWD/RWE have long been used by health authorities to assess
post-approval drug safety (e.g., Sentinel System) and, more re-
cently, they have also attracted users and participants in other parts
of the healthcare ecosystem, such as biopharmaceutical companies,
payers, providers, and paticnts.3 Legislation and regulatory poli-
cies are key factors that contributed to the increased interest and
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applications of RWD/RWE. The 21st Century Cures Act (2016)
and the subsequent sixth Prescription Drug User Fee Act (PDUFA
VI;2017) required the US Food and Drug Administration (FDA)
to assess the potential use of RWE to support new indication
approvals and post-approval study requirements and to initiate
activities to address key issues in using RWE to make regulatory
decisions, 1‘cspectivcly.4’5 Pursuant to this federal mandate, the
FDA released the “Framework for FDA’s Real World Evidence
Program” in 2018, which outlines how the FDA plans to imple-
ment its RWE Program and provides formal definitions for RWD
and RWE.® Since then, the FDA has issued a series of RWD/RWE-
related draft guidance documents focusing on data sources, data
standards, and regulatory considerations, and published related
commentaries as well.” ™ Most recently, the FDA announced its
Advancing Real-World Evidence Program, where one of the pri-
mary goals is to identify approaches for generating RWE in sup-
port of labeling claims, including new indications, populations,
or dosing.10 Beyond the United States, global health authorities,
such as the European Medicines Agency (EMA) and the Japan
Pharmaceuticals and Medical Devices Agency (PMDA), have also
shared their vision and perspectives on the application of RWD/
RWE for regulatory decision making.1 =13

Besides regulatory applications, from an industry perspective,
RWD can also benefit drug development at various stages. A recent
publication gave a comprehensive review of RWD/RWE applica-
tions and their potential to inform decision making throughout
the drug development procr:ss.14 However, to our knowledge, there
are very few publications reviewing RWD/RWE applications in
clinical pharmacology,ls_17 especially from a drug development
pcrspectivc.l7 In this paper, we review and discuss how RWD/
RWE have been, and can be, used to address questions relevant to
clinical pharmacology from an industry point of view, based on
recent publications from member companies in the International
Consortium for Innovation and Quality in Pharmaceutical
Development (IQ) RWD Working Group. Specifically, this paper
reviews case examples mainly in the following three categories: (i)
utilization of RWD to address core clinical pharmacology ques-
tions (e.g., drug—drug interaction (DDI) risk assessment and dose
selection in special populations, including patients with organ im-
pairments and pediatrics), (ii) utilization of quantitative clinical
pharmacology and model-informed drug development (MIDD)
as tools to analyze RWD and generate RWE (e.g., natural history
characterization via disease progression modeling and prognostic
factors identification), and (iii) utilization of RWE as a parallel
source of evidence supplementing quantitative clinical pharmacol-
ogy/MIDD and/or RCTs to support drug development decisions
and regulatory approvals (e.g., label expansion). We also include
multiple case examples in which RWD/RWE were used to gener-
ate synthetic/external control for rare diseases, which is a topic of
broader scientific interest but still pertinent to clinical pharmacol-
ogy. Key elements of each of the case examples are summarized in
Table 1. We also illustrate example RWD applications to inform
decisions throughout product development stages with clini-
cal pharmacology-related applications highlighted in Figure 1.
Finally, we discuss strengths, limitations, and key data elements
for commonly used sources of RWD (e.g., EHRs, medical and
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pharmacy claims, and patient registries) to guide the selection of
appropriate RWD to investigate clinical pharmacology questions
in drug development and approval.

GUIDE DRUG-DRUG INTERACTION ASSESSMENT

In clinical practice, adverse events caused by DDIs may lead to
increased morbidity, hospitalization, prolonged hospital stays, or
worsened outcomes.' Assessing the risk of DDIs is crucial when
designing clinical trials, because it can impact concomitant medi-
cation inclusion/exclusion criteria, patient recruitment, exposure
variability, etc. As such, it is important to contextualize the elim-
ination profile and potential DDIs for an investigational drug in
its target indication prior to dosing patients. Toward this end, real-
world polypharmacy data can be applied to strategically integrate
findings from early translational medicine studies that evaluate
an investigational drug’s DDI risk profile to define the inclusion/
exclusion criteria for concomitant medications in clinical trials
in patients. The value of this approach has been illustrated in an
investigational molecule being developed for the treatment of pso-
riasis (unpublished findings). In this case, /7 vitro data indicated
that the investigational molecule, which had not been evaluated in
humans yet, was a CYP3A4 substrate and also a strong/moderate
CYP3A4 inducer. So, there were two major DDI considerations:
(i) strong/moderate CYP3A4 inhibitor or inducer concomitant
medications administered with the investigational molecule could
potentially alter the exposure of the molecule and thus confound
the evaluation of the molecule’s exposure-response relation-
ship, and (ii) the investigational molecule as a potential strong/
moderate CYP3A inducer could lower the exposure of sensitive
CYP3A4 substrate concomitant medications, which may reduce
their efficacy. To have a realistic DDI risk assessment of the inves-
tigational molecule and inform clinical pharmacology strategy in
clinical trial design, RWD from IBM Marketscan (a large, admin-
istrative US claims database) were used to derive the frequency of
prescription claims for drugs that are considered strong/moderate
CYP3A4 inhibitors/inducers and sensitive CYP3A4 substrates in
the target patient population, and also derive their length of treat-
ment to determine the chronicity of polypharmacy. It showed that,
in patients with psoriasis, the majority of prescriptions of sensi-
tive CYP3A4 substrates included corticosteroids, contraceptives,
statins, and antibiotics, of which >50% were used for > 90 days.
Thus, it indicated a risk for the investigational molecule as a per-
petrator with the potential to limit the exposure and effectiveness
of some chronically used CYP3A4 sensitive substrates (e.g,, oral
birth control pills and cardiovascular drugs). RWD also showed
that up to 15% of patients with psoriasis had claims for at least
one drugwith CYP3A induction or inhibition potential, however,
CYP3A4 victim potential of the investigational drug was of rela-
tively less concern because of the low chronic use (< 1%) of strong/
moderate CYP3A4 inducer/inhibitor concomitant medications
within the psoriasis population. Given these findings, a clinical
DDI substudy was included in the first-in-human healthy volun-
teer trial of this investigational molecule to evaluate its CYP3A4
victim and perpetrator potentials. Results demonstrated that the
molecule was not a strong CYP3A4 inducer, but it was a CYP3A4
victim with the potential of > 3-fold change in exposure in the
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Table 1 Summary of case examples in RWD clinical pharmacology applications

Category Reference Objective RWD source Insight/evidence generated
Guide DDI Unpublished Determine the frequency and IBM Marketscan Informed realistic DDI evaluations based on the
assessments data from treatment duration of concomitant Claims Database target patient population in the real-world setting
Eli Lilly and medication use in the target and informed inclusion/exclusion criteria of
Company patient population concomitant medications use for patient studies
Duke et al. Identify and evaluate novel DDIs Indiana Network Five new drug—drug pairs were identified with
(2012)*° by combining a literature discovery for Patient Care increased risk of myopathy, thus indicating
approach with RWD analysis database clinically relevant DDIs through CYP3A4 and
CYP2D6 enzymes
Lorberbaum Develop a data-driven pipeline FAERS and an EHR  Unanticipated QT-DDIs can be efficiently identified
etal. for discovering QT-DDIs using a database at New via data mining and laboratory experiments.
(2016)%° combination of adverse event York-Presbyterian/ Combination therapy with ceftriaxone and
reports, EHRs, and laboratory Columbia University  lansoprazole was associated with increased risk
experiments Irving Medical of acquired long QT syndrome
Center
Yee et al. Identify transporter-mediated DDIs EHR data from Majority of the drugs were predicted to cause at
(2021)21 of 25 small molecule drugs being UCSF Research least one clinical DDI. COVID-19 patients should
evaluated for COVID-19 treatment  Data Browser and  be carefully monitored for adverse reactions likely
via in-vitro experiments and real- Cerner Real World to result from these DDIs
world data COVID-19 Database
Inform dose Sane et al. Assess the prevalence of hepatic  Flatiron Health EHR Provided evidence to justify the conduct of a
recommen- (2022)%7 impairment prior to first-line pharmacokinetic study of ipatasertib in at least
dation for therapy in patients diagnosed with participants with mild hepatic impairment
patients mCRPC or HR+/HER2— mBC
‘.N'th Qrgan Lu et al. Assess the feasibility of Flatiron Health EHR Indicated a very challenging enroliment for
impairment (2020)8 conducting dedicated organ a dedicated organ impairment study due to
impairment studies in patients prevalence, leading to a waiver of the dedicated
diagnosed with DLBCL organ impairment studies from regulatory
agencies
Spillane et al. Evaluate characteristics and Flatiron Health EHR Patients with advanced melanoma and baseline
(2020)29 outcomes in patients with organ organ impairment have poorer clinical outcomes
impairment diagnosed with than patients with normal organ function
advanced melanoma and treated
with an immune checkpoint
inhibitor
Sybing et al. Characterize the time course Optum EHR Showed evidence of glomerular hyperfiltration in
(2022)30 of glomerular hyperfiltration in pediatric SCD patients and the rate of decline in
pediatric and adult patients with adult SCD patients. Results could help clinicians
SCD in anticipating the need for dose adjustment due
to renal impairment in SCD patients
Provide Chanu et al. Use RWD/RWE to supplement IPDN database Confirmed the model simulated treatment
insights for (2020)32 modeling work based on RCTs to outcomes in pediatric patients receiving C.E.R.A.
pediatric plan optimize C.E.R.A. development i.v. and s.c. and provided a strong rationale for
development in the confirmatory trial of the applying the C.E.R.A. S.c. dosing regimen only
and study pediatric plan in pediatric patients rather than both i.v. and
design s.c., leading to- a simplified confirmatory trial in
pediatrics
Zhang Evaluate the dose—response Pediatric registry Indicated that the majority of pediatric patients
(2021)33 relationship of vedolizumab in a ImproveCareNow from the RWD database were treated with the
pediatric population with IBD using equivalent adult labeled dose of vedolizumab
RWD to support dose selection and efficacy was similar or slightly better in
for etrolizumab in pediatric clinical the pediatric study cohort compared with that
trials observed in adult clinical trials
Lukka et al. Support lacosamide dosing in Real-world Simulation-based dosing regimens for pediatrics
(2021)%4 the younger pediatric population therapeutic drug derived via pharmacokinetic modeling of RWD

(<4years old) where dose
recommendations are not yet
available

monitoring data

assessed during clinical care to generate RWE
and provide a rational basis for exposure-matched
lacosamide pharmacotherapy in children <4years
of age
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Table 1 (Continued)

Category Reference Objective RWD source Insight/evidence generated
Enable and Doler et al. Develop a disease progression ADNI database Disease progression model was developed to
enrich MIDD (2013)36 model to describe natural quantitatively characterize the progression of
notably Jamalian progression of Alzheimer’s the disease and can be used to predict natural
disease et al. disease disease progression in Alzheimer’s disease
progression (2020)37 patients
modeling Boucher Investigate disease progression THAOS Relevant and consistent disease progression and
etal. and treatment effect in patients treatment effects (of tafamidis) were estimated in
(2018)%8 diagnosed with hereditary an independent clinical trial and in patients from
transthyretin-mediated amyloid RWD
polyneuropathy, a rare disease
Wang et al. Model disease progression and Cooperative Models adequately described disease
(2019)%° identify risk factors for patients International progression for key end points in ambulatory and
diagnosed with DMD, a rare Neuromuscular nonambulatory DMD boys
disease Research Group DMD
Natural History Study
Abrams et al.  Develop a QSP model to predict ICGG Gaucher Generated virtual patients that captured the
(2020)40 response for patients diagnosed Registry appropriate disease phenotypes of interest with
with GD1 more accurate representation of their variability,
which enabled the QSP modeling that captured
specific clinical attributes of the disease,
incorporated markers of disease severity, and
informed relevant treatment strategies
Chanu et al. Use M-protein dynamics as an Flatiron Health EHR Model built with RWD can inform drug
(2021)42 early time biomarker to predict development in multiple myeloma; e.g., predict
OS for patients diagnosed with survival outcomes of multiple independent Phase
multiple myeloma iii trials leveraging M-protein dynamics collected
in a smaller early phase trial
Kotani et al. Use RWD to check survival Flatiron Health EHR  Survival data from RWD is consistent with the one
(2021)43 distribution from clinical trial used from the clinical trial used to develop the disease
to develop a disease model for model
HER2-/HR+ mBC
Identify Julian et al. Investigate prognostic factors Flatiron Health EHR A prognostic model in patients with aNSCLC
prognostic (2022)44 of OS in patients with advanced receiving anti-PD1/PD-L1 immune checkpoint
and predictive aNSCLC and develop a novel inhibitors as second line monotherapy was
biomarker/ prognostic model developed using RWD with 42 important prognostic
factors factors identified. The prognostic model was able
to discriminate overall survival and perform well in
real-world and clinical trial cohorts
Yun et al. Identify patients who may respond ACR’s RISE registry Supported better understanding of disease and
(2021)45 better to a specific drug or treatment response and identified/confirmed
mechanism of action treatment benefit differentiation factors
Support Erdman et al. Provide evidence of efficacy SRTR database Supported the use of two tacrolimus
regulatory (2021)50 and safety of tacrolimus-based combinations as maintenance
decision mak- immunosuppressive regimens in immunosuppressive regimens in adult lung
ing for label adult lung transplant recipients in transplant recipients and supported the
expansion the United States expansion of the product label to include lung
transplantation
Wedam et al. Provide evidence of safety and Flatiron Health EHR, RWD indicated that men with mBC benefit
(2020)51 effectiveness of palbociclib plus Claims databases from palbociclib plus ET, with a safety profile
Kraus et al. ET in men with HR+/HER2- mBC (Pharmacy and consistent with previous observations in women
(2020)%° Medical), and with mBC; combined with the collective data
Post-marketing in women supported by RWE, the palbociclib
surveillance indication was expanded to include men with
HR+/HER2- mBC in the United States
Lamba et al. Provide comparative RWE for CorEvitas registry RWD provided key supportive evidence, in addition
(2017)54 the IR and PR formulations of (formerly Corrona) to model-based bridging and clinical trial data, for
Cohen et al. tofacitinib in RA patients the marketing application and subsequent approval
(2021)55 of a PR formulation of tofacitinib in the European
Union (EU) as part of the totality of evidence to
bridge efficacy and safety data from a previously
approved IR tablet formulation
(Continued)
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Table 1 (Continued)

Category Reference Objective RWD source Insight/evidence generated
Generate CDER Characterize the natural history Observational Provided response rates to chemotherapy
synthetic/ (2017)%° of patients diagnosed with study consisting treatment allowing exploratory characterization of
external metastatic MCC treated with of a multicenter the risk:benefit profile of avelumab in the context
control for chemotherapy retrospective chart of the natural history of MCC and treatment
rare diseases review of patients outcomes with cytotoxic chemotherapy
treated with
chemotherapy for
distant metastatic
MCC
CDER Compare blinatumomab treated A noninterventional Improved survival probability on blinatumomab
(2018)5* patients with historical control retrospective relative to historical control calculated based on
with respect to RFS analysis of RFS and propensity scores for each patient
0S among patients
with Philadelphia
chromosome-

negative ALL and

MRD >0.01% who

received standard-

of-care treatment

Popat etal. Assess comparative effectiveness FMI CGDB Provided evidence in favor of pralsetinib over
(2022)62 of pralsetinib in NSCLC by other treatments as an effective first line

combining RWD and trial data;
performed sensitivity analyses to
quantify effect of sources of bias

treatment for RET fusion-positive aNSCLC. Bias

assessments showed robustness to potential

sources of bias and can be used as a template
for future studies

Ayodele et al. Investigate eGFR changes in

US Explorys EHR

eGFR was stable in rhPTH(1-84) treated patients

(2021)%3 hypoparathyroidism patients database; from clinical trials but declined in the historical
Chen et al. treated with rhPTH(1-84) relative  Geisinger Healthcare control/SOC group

(2020)%* to SOC treatment database
Gosmanova Explore risk of CKD in US Explorys EHR Patients treated with rhPTH(1-84) in long-term

et al. hypoparathyroidism patients
(2021)%° treated with rhPTH(1-84)

clinical trials had lower risk of CKD than historical
control

database

ADNI, Alzheimer’s Disease Neuroimaging Initiative; ALL, acute lymphoblastic leukemia; aNSCLC, advanced non-small cell lung cancer; CDER, Center for Drug
Evaluation and Research; C.E.R.A., Continuous Erythropoietin Receptor Activator; CGDB, Clinico-genomic database; CKD, chronic kidney disease; COVID-19,
coronavirus disease 2019; DDI, drug-drug interaction; DLBCL, diffuse large B-cell lymphoma; DMD, Duchenne muscular dystrophy; eGFR, estimated glomerular
filtration rate; EHRs, electronic health records; ET, endocrine therapy; FAERS, US Food and Drug Administration Adverse Event Reporting System; FMI, Flatiron
Health Foundation Medicine; GD1, Gaucher disease type 1; IBD, irritable bowel disease; ICGG, International Collaborative Gaucher Group; IPDN, International
Pediatric Dialysis Network; IR, immediate release; mBC, metastatic breast cancer; MCC, Merkel cell carcinoma; mCRPC, metastatic castrate-resistant prostate
cancer; MIDD, model-informed drug development; MRD, minimal residual disease; OS, overall survival; PR, prolonged release; QSP, quantitative systems
pharmacology; RA, rheumatoid arthritis; RCT, randomized controlled trial; RFS, relapse-free survival; RISE, Rheumatology Informatics System for Effectiveness;
RWD, real-world data; RWE, real-world evidence; SCD, sickle cell disease; SOC, standard-of-care; SRTR, Scientific Registry of Transplant Recipients; THAOS,
Transthyretin Amyloidosis Outcomes Survey; UCSF, University of California, San Francisco.

presence of strong CYP3A4 perpetrators. Combining the con-
comitant medications’ information from RWD and findings
from the human DDI substudy, it was decided to exclude the use
of concomitant medications that were strong CYP3A4 inducers/
inhibitors in clinical trials of this investigational molecule in pa-
tients with psoriasis. Taken together, RWD/RWE-informed early
DDI evaluations can help generate a seamless clinical pharmacol-
ogy strategy to inform the study design of clinical trials in healthy
volunteers (e.g., DDI substudy) and in patients (e.g., concomitant
medication exclusion).

In addition, RWD combined with other relevant data (e.g.,
in vitro or experimental data, published literature, and clinical da-
tabases) have the potential to identify clinically relevant DDI risks.
For example, Duke ¢z 4/. identified potential drug—drug pairs that
could result in an adverse event of myopathy due to CYP enzymes-
based interactions (as either a substrate or inhibitor) when co-
administered. First, authors identified an initial set of 13,197
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potential drug pairs predicted to have DDI potential based on
published iz vitro pharmacology experiments.19 Then, they iden-
tified 3,670 drug pairs taken by patients in the real world based on
analysis of a clinical repository containing over 800,000 patients.
Finally, based on rigorous statistical evaluation, five new drug—
drug pairs were identified which had increased risk of myopathy,
thus demonstrating clinically relevant DDIs through CYP en-
zymes. Authors conclude that similar automated search algorithm
may be beneficial in identifying additional clinically significant in-
teractions of the FDA approved drug by leveraging published data
and large RWD clinical databases. Another example identified that
combination therapy with ceftriaxone and lansoprazole increased
the risk of acquired long QT syndrome.*’ Investigators identified
889 drug combination pairs signaling QT risk in the FDA Adverse
Event Reporting System (FAERS) with 1.8 million QT prolonga-
tion adverse events that could not be attributed to individual ef-
fect of the drugs. An EHR database with an additional 1.6 million
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Figure 1 Example applications of real-world data to inform decisions throughout product development.

electrocardiogram records from 380,000 patients was used to nar-
row down the identified DDI pairs to 8 combinations, including
the ceftriaxone and lansoprazole combination. Then, patch clamp
experiments were conducted and revealed significant human ether-
a-go-go related gene channel inhibition by the synergistic effect of
this drug combination. This example highlights the use of RWD
to identify a novel DDI risk and then laboratory experiments to
clucidate the mechanisms of the DDI. Another recent example
during the coronavirus disease 2019 (COVID-19) pandemic ex-
emplifies how iz vitro experiments followed by confirmation from
RWD analysis identified clinically relevant transporter-mediated
DDIs for 25 small molecule drugs evaluated in clinical trials for
COVID-19.*' Authors analyzed EHR data from the University
of California, San Francisco (UCSF) Research Data Browser and
Cerner Real World COVID-19 Database to confirm that the in
vitro transporters medicated DDI risks were consistent with the
RWD. Thus, they recommended that vulnerable patients diag-
nosed with COVID-19 (i.c., geriatric patients with polypharmacy
risk) should be carefully monitored for adverse drug reactions due
to transporter-mediated DDIs for the drugs being evaluated expe-
ditiously for COVID-19 at that time.

INFORM DOSING RECOMMENDATIONS IN PATIENTS WITH
ORGAN IMPAIRMENT

Understanding the impact of organ impairment on drug exposure,
safety, and efficacy is crucial to guide dosing recommendations
and adjustments in these populations. These dose adjustments
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are typically based on exposure changes due to organ impairment,
which can be characterized using either dedicated pharmacoki-
netic (PK) studies or modeling and simulation approaches. It is a
typical practice in drug development to explicitly exclude partic-
ipants with advanced organ impairment from phase II and phase
III trials. In a few cases, dedicated efficacy and safety studies in
patients with organ impairment are conducted.”*”° In general,
enrolling participants with organ impairment is challenging irre-
spective of the study type, especially for those with moderate and
severe organ impairment. RWD/RWE can be used in this space
in multiple ways: (i) informing the need for organ impairment
studies, (i) evaluating the feasibility of characterizing exposure
changes of the investigational drug in target patient populations
with organ impairment, (iii) generating post-approval efficacy and
safety data to guide dosing in patients with organ impairment, and
(iv) assessing the time course of organ impairment progression.
Dosing recommendations for patients with organ impairment
are typically required if the drug is likely to be used in patients with
organ impairment. RWD can be used to assess the prevalence of
organ impairment in the target patient population in cases where
organ impairment is not a comorbidity in a significant portion of
the target population, which can be used to inform the need to con-
duct dedicated organ impairment studies. Sane e# 2Z.”’ conducted
a retrospective analysis using Flatiron Health EHR data to assess
the prevalence of hepatic impairment prior to first-line therapy in
patients diagnosed with metastatic castrate-resistant prostate can-
cer (mCRPC) and hormone receptor positive/human epidermal
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growth factor receptor 2 negative (HR+/HER2-) metastatic
breast cancer (mBC). Using the National Cancer Institute Organ
Dysfunction Working Group (NCI-ODWG) classification crite-
ria, the proportions of patients with mild and moderate-to-severe
hepatic impairment were 12.4% and 0.7%, respectively, in the
mCRPC cohort, and 18.8% and 1.4%, respectively, in the HR+/
HER2- mBC cohort. Based on this, the study team concluded
that mild hepatic impairment is a relatively common comorbidity
in patients with mCRPC and HR+/HER2- mBC, whereas the
prevalence of moderate to severe hepatic impairment is low in this
patient population. This analysis provided the evidence to inform
internal decision making regarding the need to conduct a PK study
for the investigational drug in participants with at least mild he-
patic impairment.

RWD can also be used to assess the feasibility of characterizing
drug exposure changes in patients with organ impairment in the
target patient population when it is not ethical to administer the
drug to participants with organ impairment who are otherwise
healthy. This can be achieved by either conducting a dedicated PK
study in patients with organ impairment or allowing the enroll-
ment of patients with organ impairment in phase II and phase III
studies. For example, to assess the feasibility of conducting dedi-
cated organ impairment studies in patients diagnosed with diffuse
large B-cell lymphoma (DLBCL), an exploratory analysis was per-
formed using RWD on previously untreated patients with DLBCL
(n=1,341) extracted from the Flatiron Health database.”® A rela-
tively low percentage of patients with DLBCL with moderate or
severe hepatic impairment (< 6%) or with severe renal impairment
(< 6%) were found in the database, indicating a very challenging
enrollment for a dedicated organ impairment study. In addition,
the analysis showed that the study population in phase II/III tri-
als cover the majority (> 90%) of the previously untreated patients
with DLBCL in the Flatiron RWD, and a dedicated hepatic/renal
impairment study would be of limited added value. Therefore,
regulatory agencies agreed with the sponsor’s proposal to not con-
duct dedicated organ impairment studies, which reduced costs,
patient burden, and development timelines. However, one limita-
tion of this RWD study was that the data included only patients
with DLBCL who received first-line therapy because there were
no data available for relapsed/refractory patients, which was the
target population. In addition, it should be noted that the eventual
labeling recommendation states that drug administration should
be avoided in patients with moderate or severe hepatic impairment
due to lack of data in this special population.

In addition, RWD can be used to provide cumulative evidence
about safety and efficacy outcomes in patients with organ impair-
ment following approval of an investigational agent. This can apply
to the above example where such information can be generated for
patients with moderate to severe hepatic impairment as well as
severe renal impairment after the initial approval, which can be
used to inform dosing recommendations in these patients. Spillane
et al”’ used RWD to evaluate the use of immune checkpoint in-
hibitors (ICIs) approved for advanced melanoma management
in patients with organ dysfunction. They conducted a retrospec-
tive analysis using Flatiron Health EHR to identify patients with
melanoma who received ICIs as the first line of treatment. A total
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of 2,407 patients were identified, of which 2.4% had a baseline of
moderate or severe renal impairment, and 2.8% had a baseline of
moderate or severe hepatic impairment. The analysis showed that
patients with advanced melanoma and baseline organ impairment
have poorer clinical outcomes (i.c., shorter real-world time to treat-
ment discontinuation and overall survival) than patients with nor-
mal organ function. This information may be used to evaluate the
need of dose adjustment in the organ impairment population.

RWD can also be an effective tool in assessing the time course of
organ impairment progrcssion, especially in certain rare diseases,
and subsequently guiding clinicians on the timing of dose adjust-
ment with respect to organ impairment. Sybing ez al* used RWD
to characterize the time course of glomerular hyperfiltration (de-
fined as higher-than-normal renal filtration rate) in pediatric and
adult patients with sickle cell disease (SCD), which is a driver of
renal impairment in later years. The onset and peak of glomerular
hyperfiltration, and subsequent decline in renal function in pa-
tients with SCD, were characterized using RWD from the Optum
EHR database. The analysis showed that hyperfiltration was ob-
served in hemoglobin (Hb) SS genotype (the common type of
SCD) patients with SCD as carly as 1year of age and peaked be-
tween 8 and 10years of age. Hyperfiltration declined steadily with
age in Hb SS patients, and after 40—-50years of age, the estimated
glomerular filtration rate fell below that for the non-SCD popula-
tion. This was the first analysis showing evidence of glomerular hy-
perfiltration in pediatric patients with SCD and the rate of decline
in adult patients with SCD using RWD and is deemed useful for
clinicians by helping anticipate the need for dose adjustment due
to renal impairment in patients with SCD.

SUPPORT PEDIATRIC PLAN DEVELOPMENT AND DOSING
OPTIMIZATION

Pediatric dosing is often extrapolated from adults using exposure
matching approach with limited information on the physiologi-
cal, anatomic, and ontogeny-based differences between pediatric
and adult populations. The recent draft International Conference
on Harmonization (ICH) harmonized guideline E11A on pedi-
atric extrapolation recommends leveraging multiple sources of
information to contribute to the clinical evidence package, and
the use of RWD is encouraged and discussed.’ In the case stud-
ies detailed below, RWD were leveraged to support pediatric drug
development and dose selection in multiple ways by confirming
model-based inferences, by leveraging competitor data, or by ex-
ploring pediatric population for which no dose recommendations
were yet available.

Chanu et 43* used RWD/RWE to supplement modeling based
on RCTs to optimize pediatric development plan and the con-
firmatory trial design for Continuous Erythropoietin Receptor
Activator (C.E.R.A.). The initial pediatric plan was designed as a
phase IT dose-finding study using C.E.R.A. administered intrave-
nously (iv.) followed by a large confirmatory trial using C.E.R.A.
dosed via both iv. and subcutancous (s.c.) injection along with a
comparator arm. The plan was then optimized usinga model-based
PK/pharmacodynamic (PK/PD) analysis confirmed by RWD to
reduce the confirmatory trial to a smaller, single arm trial with only

s.c. C.E.R.A. The PK/PD model was built with data from a phase
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IT pediatric iv. study and phase II/III adult studies to determine
the PK/PD characteristics of C.E.R.A. administered i.v. and s.c. in
a broader population. RWD on C.E.R.A. doses and Hb levels ob-
tained from the International Pediatric Dialysis Network (IPDN)
registries confirmed the model-predicted treatment outcomes in
pediatric patients receiving C.E.R.A. iv. and s.c. This provided a
strong rationale for testing the C.E.R.A. s.c. dosing regimen only
rather than both iv. and s.c. in pediatric patients. Therefore, the
confirmatory trial was re-designed and simplified, which reduced
unwarranted drug exposure and treatment burden for children and
shortened timelines to bring C.E.R.A. sooner to pediatric patients.
One limitation of this study is that only summary level (not patient
level) RWD were used to compare with model predicted data (i.c.,
model-based simulations as median and 90% prediction interval
were compared with median of observed value in RWD). For fur-
ther evaluation purpose, the sponsor has also launched a prospec-
tive RWD study to collect patient level data.

In another example, RWD from pediatric patients with off-
label use of a competitor drug were used to inform pediatric dose
selection and the development plan for an investigational drug.
Etrolizumab, a humanized monoclonal antibody, was under clin-
ical development for inflammatory bowel disease (IBD). One of
etrolizumab’s mechanisms of action is shared with vedolizumab,
which has already been approved for adults with IBD. RWD from
pediatric patients treated with vedolizumab (off-label use) from
the ImproveCareNow (ICN) registry (the largest pediatric IBD
registry) were used to characterize the dose—response relationship
and provide additional evidence in support of dose selection for
etrolizumab in pediatric clinical trials.®® The results indicated that
the majority of pediatric patients from the RWD database were
treated with doses equivalent to the adult labeled dose of vedoli-
zumab, and the efficacy was similar or slightly better in pediatric
cohorts compared with that observed in adult pivotal clinical tri-
als. The key limitation of this study was related to the dosing data.
This is because vedolizumab doses (off-label use) in pediatric pa-
tients are not standardized in real-world settings (e.g., some doses
are fixed while others are body weight-based) and dose disparity
as dose can be confounded by disease severity (i.c., more severe
patients are likely to be given higher doses as compared with less
severe patients), both of which may introduce bias in the analysis.

RWD were also used to support dosing in younger pediatric
populations where dose recommendations are not yet available.
For instance, lacosamide, an anti-epileptic drug, is approved for the
treatment of focal seizures in children > 4 years of age and adults.
Researchers used real-world therapeutic drug monitoring data
from 315 pediatric patients (> 1 month to < 18 years of age) who
received lacosamide to build a population PK model with allome-
tric scaling of body weight and covariate analysis (age included).**
The model was used to simulate lacosamide exposure for age-
associated doses to match the exposure in children > 4 years of age
with the weight-based dosing recommendations provided by the
FDA. Using this approach, the authors provided dose recommen-
dations for children aged 1 month to <4years old. Potential lim-
itations of this study included imbalance in patient representation
across age groups, co-medications, and a higher variability in drug

dosing and follow-up timing in the RWD.
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ENABLE AND ENRICH MODEL-INFORMED DRUG
DEVELOPMENT NOTABLY DISEASE PROGRESSION
MODELING

The use of quantitative methodologies and MIDD in clinical
pharmacology has exponentially increased in the past decade
to guide decision making in drug development and approval.*
Approaches such as pharmacometric modeling and quantitative
systems pharmacology (QSP) modeling have allowed research-
ers to answer questions that cannot be addressed by traditional
clinical pharmacology or statistical approaches. The increasing
availability and accessibility of RWD has expanded the capabil-
ities of modeling in a multifaceted manner. RWD can be used for
model development (e.g., alone or in combination with clinical
trial data), model validation (e.g., external data source to validate a
model built with only clinical trial data), and in support of model
building and evaluation (e.g., inform virtual population genera-
tion in QSP modeling).

Notably, RWD/RWE provide insights into disease progression
by capturing information on real-world patients in the real-world
setting. Unlike clinical trials, which provide a snapshot of a patient’s
journey, RWD with long follow-up can better capture the natural
history of a disease and/or discase progression as well as potential
risk factors which may influence disease progression. For instance,
researchers developing models to complement drug development
efforts for Alzheimer’s disease used RWD from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database alone or to-
gether with placebo data from interventional clinical trials, to pre-
dict disease progression.’®” By predicting individual trajectories
of disease progression in the absence of treatment, the model can
reliably assess drug effects for molecules in development and can
be leveraged for study design of future clinical trials. Use of an
RWD patient cohort allowed for a larger sample size, more diverse
patient population, and longer follow-up compared with a clini-
cal trial. Combining clinical trial data with RWD allowed a richer
dataset for model building, and conducting external validation
with clinical trial data also helped assess predictive performance of
the model.”” RWD may be particularly valuable to characterizing
disease progression in rare diseases, where clinical trial size is lim-
ited by the small patient pool. Boucher ez 42.*® used RWD from the
Transthyretin Amyloidosis Outcomes Survey (THAOS) to inves-
tigate the natural history of disease progression as well as treatment
effect in patients diagnosed with hereditary transthyretin amyloid
polyneuropathy. Similarly, using an existing Duchenne muscular
dystrophy (DMD) natural history database, researchers built in-
dependent longitudinal models for the North Star Ambulatory
Assessment total score for ambulatory boys and for the forced vital
capacity percent predicted value for non-ambulatory boys to char-
acterize disease progression of DMD and identified risk factors
having a significant effect on outcomes in boys diagnosed with this
disease.”” These models informed the quantitative understanding
of disease progression in rare diseases, and simulation results from
the models could then contribute to the study design of future clin-
ical trials to accelerate clinical drug development.

Besides disease progression models, RWD can be used to enrich
and enable other types of models to inform drug development. For
example, a QSP model for Gaucher disease type 1 (GD1) was built
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with the intention to predict treatment response within the hetero-
geneous GD1 patient population.40 Researchers in this study were
able to use data from a variety of sources, including RWD from
the International Collaborative Gaucher Group (ICGG) Gaucher
Registry. This registry consists of more than 6,000 patients with
Gaucher disease across more than 60 countries, allowing for inte-
gration and evaluation of response from more diverse and repre-
sentative patient populations relative to those enrolled in clinical
trial settings. Although differences between registry and clinical
trial data were identified, steps were taken to reduce bias when
using the registry data to generate virtual patients that capture
the appropriate disease phenotypes of interest with more accurate
representation of their variability. This in turn enabled the QSP
modeling that captured specific clinical attributes of the disease,
incorporated markers of disease severity, and allowed development
of relevant treatment strategies.

In addition, there is a well-established modeling and simulation
framework in oncology that links dose, exposure, tumor dynam-
ics, and overall survival (C)S).41 The link between tumor dynamic
and OS is disease-specific and drug-independent. Tumor growth
inhibition (TGI) metrics can be used to capture treatment effect
and predict the OS benefit in this TGI-OS disease modeling
framework. In recent years, RWD have been used to model TGI
and its relationship to OS, enabling carly efficacy predictions
based on tumor dynamics for molecules of interest. For example,
Chanu et al* recently presented data where researchers utilized
a serum-based marker for tumor burden (M-protein) and OS data
from Flatiron Health to build a drug-independent disease model
for multiple myeloma. This disease model can support drug de-
velopment in multiple myeloma by predicting OS based on early
M-protein dynamics data obtained for a new investigational drug.
For instance, it could be used to simulate OS benefits vs. standard
of care complementary to observed progression-free survival ob-
tained in a randomized pivotal trial, or assess the probability of
success of a trial investigating a new treatment over a reference
treatment leveraging M-protein dynamics collected in a smaller
phase I or phase II trial. In a similar context, for the development
ofa TGI-OS model in patients with HR+/HER2— mBC based on
clinical trial data, real-world OS data from Flatiron Health were
used to ensure the OS distribution used to develop the model was
representative of the real world population, thus verifying model
relevance for drug development in the target population and real
world setting.43 One challenge with the use of RWD in oncology
for modeling purposes is that patients are followed along several
lines of therapies and it is important to have a systematic and con-
sistent way to select the right line of therapy in each patient that is
relevant to the drug development question.

IDENTIFY PROGNOSTIC AND PREDICTIVE BIOMARKERS/
FACTORS

RWD can be leveraged to identify factors for disease prognosis or
to elucidate increased treatment benefit via modeling approaches,
which can inform patient subpopulation classification of either
high-medical need or high-benefit potential. To enhance clinical
utility, data from clinical studies are often combined with data
from real-world sources to cither establish or validate prediction
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models. For example, Julian ez al.** utilized a retrospective obser-
vational patient cohort with advanced non-small cell lung cancer
(NSCLC) from the Flatiron Health database to develop a novel
prognostic model to identify disease prognostic factors for OS. A
Cox proportional hazards survival model was built with RWD
from 4,049 patients with advanced NSCLC on selected second
line anti-PD1/PDL1 monotherapy (atezolizumab, nivolumab, or
pembrolizumab). The ability of the established prognostic model
to predict OS differentiation was then validated using a patient
cohort treated with second line atezolizumab monotherapy from
an independent RCT. With this validated prognostic model of
OS, multiple prognostic factors (e.g., baseline demographics, clin-
ical characteristics, and laboratory results) that enhance or reduce
risk of death were identified, which can be used to support future
research on patient prognostic prediction.

In addition, Yun et al® presented an example of using RWD
to validate a previously established treatment responder identi-
fication model built with clinical trial data. Based on sarilumab
clinical trial data, a laboratory results-based rule to identify
patients with rheumatoid arthritis (RA) with a more favorable
response to sarilumab was established via a machine learning
approach. Two hundred five sarilumab users were then iden-
tified from the American College of Rheumatology (ACR)’s
Rheumatology Informatics System for Effectiveness (RISE) data
from 2017 to 2021 based on prespecified inclusion/exclusion
criteria. Logistic regression indicated that better sarilumab re-
sponses were demonstrated in rule-positive patients compared
with those in rule-negative patients in the real-world setting.
This RWD application illustrated the use of RWE to understand
disease and treatment response and identify/confirm treatment
benefit differentiation factors.

SUPPORT REGULATORY DECISION MAKING AND LABEL
EXPANSION

Currently, substantial evidence from adequate and well-controlled
clinical studies, typically consisting of RCTs, is required for drug
licensing and regulatory approval.46 However, other types of
clinical studies, including single-arm trials, open-label trials, and
meta-analyses supplemented by RWE, have been utilized for drug
approval in limited instances, such as in rare diseases. Under the
Cures Act, the FDA’s RWE Program evaluates the potential use
of RWD to generate RWE on product effectiveness to help sup-
port label expansion with new indications, populations, or dos-
ing for approved drugs, and the role of RWE in supporting label
changes has been discussed in the literature.*** In this context,
the examples below illustrate recent utilization of RWE for label
expansion of new indications and new product formulation, with
significant clinical pharmacology input in the totality of evidence
required for such regulatory approvals.

RWD have been used to assess effectiveness of tacrolimus
(TAC)-based immunosuppressive regimen combinations in adult
lung transplant recipients, which is a patient population challeng-
ing to recruit in clinical trials. In this case, RWE was generated
using retrospective analysis of the Scientific Registry of Transplant
Recipients (SRTR) database (the most comprehensive database
of transplant recipients in the United States). Analyses indicated
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that lung transplant recipients who received a combination of TAC
with mycophenolate mofetil or azathioprine at hospital discharge
had high survival rates at 1-year post-transplant, supporting the use
of TAC in these combinations as maintenance immunosuppression
in adult lung transplant recipients. This RWE, along with evidence
from pivotal RCTs of TAC and a meta-analysis report of three
RCTs in patients with a lung transplant with TAC-based treat-
ment, provided totality of effectiveness and safety evidence that
led to label expansion of TAC to include lung transplantation.SO

Based on RWD, men with HR+/HER2— mBC were shown
to benefit from palbociclib plus endocrine therapy (ET).>"*
Palbociclib treatment in men with mBC was evaluated using three
independent RWD sources: IQVIA Insurance database (pharmacy
and medical claims, 7z =1,139), Flatiron Health breast cancer data-
base (EHRs, z=59), and a global safety database. RWE indicated
that men with mBC benefit from palbociclib plus ET, with a safety
profile consistent with previous observations in women with mBC.
In addition to RWE, similar palbociclib exposures were demon-
strated in men and women using a population PK analysis.53
Therefore, RWE together with previous pivotal clinical trials data
and a well-established benefit/risk profile of palbociclib led to the
palbociclib label expansion to include men with HR+/HER2—
mBC in the United States.

RWE also supported the approval of a prolonged release (PR)
formulation of tofacitinib in the European Union as part of total-
ity of evidence approach to bridge efficacy and safety data from
a previously approved immediate release (IR) tablet formulation.
Tofacitinib is an oral Janus kinase inhibitor that was initially ap-
proved globally as an IR oral tablet, at a dose of 5 mg twice daily, for
adult patients with moderate to severe active RA, based on a tradi-
tional development program that included confirmatory phase III
RCTs. The PR tablet formulation of tofacitinib was developed, at
a dose of 11 mg, to provide a more convenient once daily dosing
alternative. Following the approval of the PR tablet in the United
States, based on comparative phase I PK data and an MIDD ap-
proach to bridge efficacy and safety in patients with RA,54 the PR
formulation was included in the ongoing US registry (CorEvitas,
formerly Corrona) initially used for the IR formulation. Limited
clinical trial data with the PR formulation and the MIDD-based
bridging were considered to be insufficient evidence for consid-
eration to approve the PR formulation in the European Union.
The comparative effectiveness of the IR and PR formulations in
patients with RA from the CorEvitas registry provided key sup-
portive evidence that subsequently resulted in product approval for
the PR formulation in the European Union.

GENERATE SYNTHETIC/EXTERNAL CONTROL FOR RARE
DISEASE

RCTs, by definition, require a control intervention arm to accom-
pany the experimental intervention arm. The control intervention
may be placebo or standard-of-care, if one exists. Randomization
supports an unbiased comparison between the intervention arm
and the control arm. Various practical and ethical factors can
make patient recruitment and retention challenging for the con-
trol arm. This is especially true for rare diseases, where the eligible
patient pool may be too small to adequately recruit for even the
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treatment arm. Some rare diseases may not have a standard-of-care
established, and patients may be reluctant to join or remain in the
placebo arm. In some cases, treatment with placebo may be uneth-
ical. Moreover, emerging evidence from an ongoing study could
affect clinical equipoise due to, for instance, belief of clinical ben-
efit in the intervention arm.>® Because of these logistical and eth-
ical challenges, external control arms based on external data (e.g,,
RWD) may be considered as an alternative. An external control
is based, at least in part, on external data, which refers to any rel-
evant source of clinical data not from a concurrently randomized
control group within the same stucly.57 The external control may
be selected patient cohorts from one or more external data sources
and also modified using statistical methodologies, and it is also
referred to as the synthetic control.>®

External control arms based on RWD have been used to sup-
port regulatory filings.59 Avelumab was approved for the treatment
of metastatic Merkel cell carcinoma, a rare skin cancer. Data from
an EHR database were used to create an external control arm and
were considered in the FDA review as an exploratory component
to “further characterize the risk/benefit profile of avelumab.”®
Another relevant example is blinatumomab, which is indicated
for Philadelphia chromosome-negative relapsed or refractory B-
cell precursor acute lymphoblastic leukemia (ALL). Retrospective
ALL patient data were used to construct an RWD-based external
control using propensity matching and compared with RCT data
from a single-arm efficacy study conducted for blinatumomab.®!
Various challenges (e.g., non-contemporaneous historical control
and difference in follow-up duration), were identified as limiting
factors for a reasonable comparison. The review concluded, “the
propensity score analysis was not sufficient to determine the es-
timate of the benefit of blinatumomab.” Both reviews provided
insights into how external controls may be used to support regula-
tory filings and highlighted data quality and analytical approaches
which may maximize the utility and acceptance of external con-
trols by health authorities.

Use of external control arms has also been reported for other
oncology drugs. Only 1-2% of all patients with NSCLC are re-
arranged during transfection (RET) gene fusion-positive, making
this a rare mutation. A nonrandomized, open-label, uncontrolled
study demonstrated that pralsetinib, a selective RET inhibitor,
was efficacious in treatment-naive RET fusion-positive patients.
However, in this trial, efficacy of pralsetinib was not assessed in
relation to other therapies. Popat ez al.%? used RWD to construct
an external control and demonstrated pralsetinib offered a survival
benefit relative to other therapies. Importantly, the authors per-
formed various sensitivity analyses to quantify how various sources
of bias in the RWD may impact the conclusions. Recent studies
have also used external control arms to assess the long-term impact
of treatment in rare endocrine diseases when a simultaneous long-
term control arm is either unethical or impractical.63_65

As with any other application of RWD, the quality of the data
is a key factor in determining its usability, especially for regulatory
purposcs.66 Use of evolving statistical and analytical methods that
quantify the impact of potential bias in the external control data
are likely to improve the robustness of conclusions and increase
confidence in the evidence generated.58
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CONSIDERATIONS FOR SELECTING COMMON SOURCES OF
RWD TO ADDRESS CLINICAL PHARMACOLOGY QUESTIONS
Key information needed from RWD to address research ques-
tions related to clinical pharmacology often includes: (i) patient
characteristics (e.g., age and sex), (ii) disease status (e.g., diagnosis,
severity, duration, and staging), (iii) medications used (e.g., name,
formulation, dose amount, frequency, duration, and prior lines
of therapy), (iv) laboratory tests (e.g., test type, methods, and re-
sults), and (v) other diagnostic tests (e.g., biomarkers, genotypes,
and tumor size). Common types of RWD that may provide this
information include medical and pharmacy claims, patient-level
data from EHRs, diagnostic laboratory tests, hospital chargemas-
ter records, disease or product registries, and patient surveys, as
well as data from medical and mobile/wearable devices. Each type
of RWD has strengths and limitations, and tradeoffs are often
necessary when selecting a source of RWD for a study. Key at-
tributes, strengths, and limitations of the three common RWD
sources (i.e., claims, EHRs, and patient registries) are summarized
in Table 2 and discussed below. Common data elements found in
different types of RWD are also summarized in Table 3.

Databases with claims from large employers or health plans (e.g.,
MarketScan and PharMetrics) can provide rich information about
working-age adults but often exclude those covered by Medicaid,
Medicare, or other government-sponsored programs in the United
States. Conversely, claims data from government sources (e.g.,
Medicare 5% national sample) may contain important informa-
tion about adults over the age of 65years, with permanent dis-
ability, or with certain chronic health conditions (e.g., end-stage
renal disease) but often exclude those under the age of 65 years. To
study diseases that span across ages and types of payers, such as in-
fections, it may be necessary to combine findings from multiple
sources of RWD with different patient populations (e.g., commer-
cial claims+Medicare claims+ Medicaid claims). Alternatively,
researchers can consider an open network claims database that
includes all payers (e.g., IQVIA Rx/Dx and Symphony Health),
although these data sources often lack details about patient health
insurance coverage status and contain only unadjudicated claims
that may later be rejected by payers. A more general limitation for
all claims databases is that they rely exclusively on clinical coding
(e.g., International Classification of Diseases (ICD)-10 diagnosis
codes) to convey health status, because claims are designed primar-
ily for billing purposes, and such coding may be inaccurate or im-
precise to identify or confirm a specific disease of interest. It can
also be difficult to attribute specific healthcare encounters (e.g., of-
fice visit and hospital admission) to a single health condition when
multiple diagnoses are present in the claims data.

Data from EHRs generally offer richer information about pa-
tient demographics (e.g., race, ethnicity, marital status, and occupa-
tion), lifestyle (e.g., smoking status, use of alcohol, and recreational
drugs), medical history (e.g., vaccinations, family history, and lines
of therapy), drug allergies, use of over-the-counter medications,
vital signs (e.g., body mass index (BMI) and blood pressure), symp-
toms (e.g., severity, frequency, and duration), examination find-
ings, clinical reasoning (e.g., differential diagnosis), and treatment
plan (e.g., specialist referral).”” However, researchers interested in
using EHR data should be aware of several limitations. A general
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drawback of EHR data is that specific data clements (c.g., BMI)
are often missing and it is unclear if this missingness pattern is ran-
dom. For example, a study found that BMI was more likely to be
recorded in EHR data for patients with type 2 diabetes mellitus
(T2DM) than those without T2DM.®® Because individuals with
T2DM generally have a higher BMI, differences in data availability
could bias comparisons of BMI between these two groups. EHR
data may also contain conflicting or inaccurate information which
is exacerbated with repeated measurements (e.g., large fluctuations
in body weight over short time intervals may indicate a data entry
error).69 Additionally, EHR databases are often limited to health-
care providers who use a specific type of EHR system or have a data
sharing agreement and may therefore not include all health care
received by a patient (e.g., EHR data may not include data from
allied health providers who use a different EHR system). Data on
medication use in EHRs generally reflects medications that are
prescribed rather than dispensed and consumed. Although some
EHR databases include results of basic laboratory tests (e.g., com-
plete blood cell counts and metabolic panel), limited information
is available about the specific test methods used, and EHR da-
tabases generally do not contain detailed results about more ad-
vanced diagnostic tests (e.g., imaging, biopsies, and genotyping).
It should also be noted that the unstructured EHR data (i.e., de-
tailed clinical notes) that may be of greatest interest to rescarchers
often cannot be shared by data vendors due to privacy concerns.
Biopharmaceutical companies must therefore rely on EHR data
vendors to review, interpret, analyze, and summarize this informa-
tion on their behalf according to a study protocol and analytical
plan; such studies can be very costly and must often be repeated for
each disease of interest. Natural language processing is increasingly
used to more efficiently analyze large volumes of unstructured
EHR data but such techniques are still evolving.

Patient registries (i.e., disease or product registry), on the other
hand, often contain standardized and longitudinal information
about patients with specific diseases (e.g., DMD) or who received
specific therapies (e.g., gene therapy for SCD).70 These data can
provide insights about changes in outcomes (e.g., patient-reported
outcomes and physician assessments) over time and on how pa-
tient covariates (e.g., genotypes, phenotypes, comorbidities, prior
therapies, and concomitant medications) can impact such changes.
For example, the Collaborative Trajectory Analysis Project (¢TAP)
combines data from multiple registries related to DMD that con-
tain standardized measures such as the North Star Ambulatory
Assessment taken at regular intervals.”! Data from such patient
registries are often used in clinical pharmacology to develop phar-
macometric models (e.g., disease progression model), create ex-
ternal control for single-arm studies or i silico (simulated) trials.
Although patient registries focused on specific diseases or therapies
may have a much smaller total patient population (c.g., hundreds
or thousands) than those found in large claims or EHR databases
(e.g., tens of millions), they may nevertheless represent the single
largest available data source for that disease or therapy. One par-
ticular limitation of patient registries is that they lack a compara-
ble control group (i.e., patients without the disease or therapy of
interest); as a result, comparative studies using registry data often
combine them with other sources for an appropriate control group.
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Table 2 General strengths and limitations of common RWD sources for clinical pharmacology applications

RWD Major data

source contributors Limitations Strengths Example vendors

Claims e Large, self- ¢ Use clinical coding (e.g., ICD-10 diag- ¢ Very large sample sizes IBM/Truven

(Medical insured nosis codes) to represent all health ¢ Include all health conditions and MarketScan,

and employers conditions diseases IQVIA Pharmetrics

Pharmacy) e Commercial * ICD codes can have varying degrees of ¢ Include all healthcare services Plus, Optum
insurance predictive value depending on disease including procedures, covered by Clinformatics,
companies types or type of stays (outpatient vs. third-party payers Komodo

Centers for
Medicare and

inpatient)
Complex data driven definitions some-

Comprehensive longitudinal
patient history captured

Medicaid times needed to capture actual cases ¢ Include all types of healthcare
¢ RWD ¢ Patients can be lost to follow-up with providers and care settings
aggregators change in insurance provider ¢ Good representation of work-
¢ No measure of disease severity unless ing age adults with employer-
specified in diagnosis code sponsored health insurance
¢ Represent only health conditions ¢ Allow patients to be followed
deemed relevant for billing purposes over several years
¢ No physician notes (i.e., no unstruc- ¢ Include information about costs
tured data) of healthcare services
¢ No information on laboratory test ¢ Pharmacy claims include medica-
results tion name, formulation, strength,
¢ Limited information on race, ethnicity, route of administration, quantity,
smoking status, family history, etc. and days supplied
¢ No over-the-counter or self-pay
medications
¢ No information about medications
prescribed but not filled
¢ No information about medications
administered during inpatient stays
¢ Not representative of all age patient
ages and third-party payer types
¢ Deaths not captured for majority of
cases
EHRs ¢ General EHR ¢ Include only health encounters with ¢ May include information about Optum Panther,
vendors (e.g., healthcare providers who use specific patient demographics (e.g., race,  Flatiron Health,
Cerner) EHR software or are part of specific ethnicity, marital status) TriNetX, Clinical

Specialty EHR
vendors (e.g.,
Flatiron)

Large health
systems (e.g.,
Truveta)
Specialty health
networks (e.g.,
US Oncology)

network so there could be unknown
gaps in patient history

Do not contain information about
charges or costs of healthcare services
Do not include detailed information
about health plan coverage status
Information about medications pre-
scribed but not if they are dispensed or
taken

Self-reported health information (e.g.,
medications used, immunization
history) may be inaccurate or missing
Detailed information in clinical notes
and unstructured data may not be
shared

Completeness of mortality data
variable

May include information about
lifestyle (e.g., smoking, alcohol)
May include vitals (e.g., blood
pressure, BMI) and physical
examination findings

May include basic laboratory
tests (e.g., metabolic panel)

but not advanced tests (e.g.,
genotyping)

May include clinical information
beyond ICD-10 diagnosis codes
May include information about
over-the-counter medications
May include reason why medica-
tion was prescribed

May provide more information
on medications administered in
hospital settings

May provide information about
outcomes from clinical notes
May contain genomic/molecular
test results

Multimodal EHRs contain clini-
cal, genomic, and transcriptomic
data appropriate for precision
medicine or targeted drug
development

Practice Research
Datalink (UK),
Ontada iKknowMed,
ConcertAl,
Multimodal EHR
(e.g., Tempus
Labs)
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Table 2 (Continued)

Limitations

Strengths

Example vendors

RWD Major data
source contributors
Patient e Clinical
disease or research
treatment networks
registry e Academic

health centers

¢ Commercial
vendors (e.g.,
oM1)

e Private-public
partnerships
(e.g., Critical
Path Institute)

Data and patient population captured
depends on the original purpose/proto-
col of the registry

May not be suitable to use for other
purposes

May not provide sufficient representa-
tion of a broad patient population

May have slow process, long wait time
Lack data on comparator groups: no
controls for disease registries and no
comparator data for drug registries
Important data elements (drug/con-
comitant medication dosing, duration,
interruption data) may be missing
unless registry development is not
protocol or research hypotheses driven

May represent single largest
source of data for rare diseases
May have standardized data col-
lection instruments and methods
May offer good longitudinal
follow-up

May offer more detailed health
information (e.g., disease sever-
ity) than claims or EHR

May span across regions and
countries

Data collection is usually dis-
ease or drug focused and more
comprehensive and granular

ImproveCareNow

registry,

Cystic Fibrosis
Foundation
Registry,
International
Collaborative
Gaucher Group

Gaucher Registry,

Collaborative

Trajectory Analysis

Project

BMI, body mass index; EHR, electronic health record; ICD-10, International Classification of Disease-10th revision; RWD, real-world data.

Table 3 Common data elements found in different sources of RWD for clinical pharmacology applications

Category Variable

Claims

Medical Pharmacy EHR

Patients Age

X X

Sex

Race/ethnicity

Insurance coverage/type

X X
? ?
X X

Family history

BMI

>

Healthcare providers Identifier

Specialty

Location

Encounter Date

Type (e.g., inpatient, outpatient)

Procedure codes

Diagnosis codes

XX | X | X | X|X |~

Prescription medication Generic/brand name

Description (e.g., strength, formulation)

XX | X | X | X |X|~|Xx

Quantity (e.g., number, days supply)

Indication (reason for prescribing)

X | X | X | X

Clinical records Measurements (e.g., vitals)

Observations (e.g., notes)

Rationale (e.g., reason for prescribing)

Diagnostic laboratory Description

Code (e.g., LOINC)

Results

NN Y Y X | XX

Blank, data generally unavailable; ?, uncertainty of data availability (depending on the source data vendor).
BMI, body mass index; EHR, electronic health record; LOINC, logical observation identifiers names and codes; RWD, real-world data; X, data generally available.

Given these tradeoffs, when selecting a source of RWD for
clinical pharmacology purposes, it may be necessary to com-
bine information from multiple data sources to answer all re-
search questions. However, this process can be challenging

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 114 NUMBER 4 | October 2023

for biopharmaceutical companies because RWD are generally
de-identified by data vendors prior to being shared. The data
vendors (e.g., IQVIA and Optum) who have access to patient
identifiers (e.g., name, date of birth, and health plan identifier)
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must therefore be involved with the process of combining RWD
databases. Traditionally, this was accomplished by licensing mul-
tiple types of RWD (e.g., claims and EHR) from one data vendor
who would link databases with a common patient identifier prior
to de-identifying and sharing the data externally. More recently,
patient tokenization, for example, creation of a unique patient
identifier that cannot be used to re-identify the patient without
proprietary software, offers new options to combine sources of
RWD. For example, companies with tokenization technology
(e.g., Health Verity and Komodo) can now offer access to differ-
ent types and sources of RWD (e.g., claims and EHRs) that can
be linked by a common patient token prior to de-identification
and licensing. As more RWD vendors use tokenization tech-
nology, the number and types of databases that can be linked to
provide a more comprehensive understanding of patient health
will increase. Perhaps more importantly, this same tokenization
technology will also allow biopharmaceutical companies and
clinical research organizations that generate patient-level data
in clinical trials to link trial participants to external sources of
RWD, allowing for hybrid study designs (e.g., clinical trial ex-
tensions with RWD). Furthermore, if combing RWD from mul-
tiple sources is not possible, another potential alternative is to
design a prospective RWD study and intentionally capture the
data and information needed in the real-world sc:tting.72

Of note, data quality and completeness issues (e.g., missing data)
are well-known challenges of using RWD. Because commercially
available sources of RWD generally contain data where both the
patient and Healthcare Provider are de-identified, it is generally
not possible for a user to issue queries to the data provider related
to incomplete, missing, or questionable data. As a mitigation plan,
researchers using RWD should be aware of this limitation, ac-
knowledge that it may limit generalizability beyond the study pop-
ulation, perform feasibility analyses to determine the availability
of specific variables of interest, consider sensitivity analyses to deal
with outliers (e.g., exclude based on number of standard deviations
from the mean), or develop methods to impute missing data (e.g.,
last observation carryforward).

Additional considerations and challenges for analyzing RWD
to inform specific clinical pharmacology related areas (ie.,
DDIs and organ impairment) are included in Supplementary
Material S1.

CONCLUSIONS AND FUTURE DIRECTIONS

Recent advances in RWD/RWE have created valuable sources
of data and information. In addition to evidence from RCTs,
RWD/RWE have been at the forefront of pharmaceutical inno-
vation and informed decision making across the entire life cycle
of a drug product including, but not limited to, discovery, clinical,
regulatory/safety, value and access, and commercial. From the per-
spective of clinical pharmacologists, it is important to seek greater
understanding and appreciation of the opportunities present at
the intersection of RWE and clinical pharmacology, in terms of
both the utilization of RWE to address specific clinical pharma-
cology questions as well as the application of quantitative clinical
pharmacology approaches to analyze RWD and generate RWE.

Case examples reviewed and discussed here cover both aspects and

764

beyond. Further understanding of the current scope and extent of
interactions between RWE and clinical pharmacology will help
guide strategies for broader and more advanced applications in the
future.

There are several approaches that the clinical pharmacology
community could adopt to achieve broader and more advanced ap-
plications of RWD/RWE. First, facilitate effective collaborations
with various functions, including epidemiology/biostatistics, clin-
ical sciences, biomarker/translational sciences, and medical affairs,
and leverage their expertise in feasibility assessment, RWD source
selection, patient population identification, and data extraction
and data cleaning to enable successful use of RWD for evidence
and insights generation. Ideally, the analysis of RWD should be
undertaken by a cross-functional team with expertise in different
domains, as outlined in Table 4. Second, develop user-friendly
RWD dashboards/interfaces to increase RWD accessibility and
usage. Furthermore, include RWD/RWE in clinical pharmacology
and/or MIDD plans at early stages of drug development, along
with continual updates and assessments throughout the process, to
increase the impact of RWD/RWE. In addition, engage with the
health authorities and leverage the FDA’s Advancing Real-World
Evidence Program to get valuable input and feedback to improve
the quality and acceptability of RWD/RWE for new intended
labeling claims.!® With increased awareness, accessibility, and im-
pactful applications of RWD/RWE in clinical pharmacology, we
can better leverage opportunities for using RWE to address key
drug development questions from a clinical pharmacology per-
spective in the future.

Table 4 Suggested cross-functional team for RWD project
design and analysis for clinical pharmacology applications

Function Expertise

Biostatistics Data analysis, study design, and selecting
appropriate statistical techniques to answer

research questions

Clinical
development

Evidence expected from product clinical
development program and feasibility of
traditional/prospective data collection

Clinical
pharmacology

Research question, common data sources,
expectations from various stakeholders, and
data interpretation

Data engineering Importing, verifying, and optimizing large

sources of external data for analyses

Epidemiology Observational research methods and study

design to minimize bias and confounding

Clinical domain, standards of care, and areas
of concerns to healthcare providers

Medical affairs

Real-world Available data sources from different vendors,
evidence types of variables they contain, and common/
permitted uses
Regulatory Regulatory guidance related to research
affairs questions, regulatory precedents for using
RWD, expectations from regulators
RWD Efficient programming approaches to selecting

programming and analyzing patient cohort of interest from

larger RWD sources

RWD, real-world data.
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SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical
Pharmacology & Therapeutics website (www.cpt-journal.com).
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