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Clinical Pharmacology Applications of  
Real-World Data and Real-World Evidence in 
Drug Development and Approval–An Industry 
Perspective
Rui Zhu1,**,*, Bianca Vora1 , Sujatha Menon2, Islam Younis3 , Gaurav Dwivedi4, Zhaoling Meng5,  
Amita Datta-Mannan6, Pooja Manchandani7, Satyaprakash Nayak2 , Brinda K. Tammara2,  
Parag Garhyan8, Shahed Iqbal9, Simon Dagenais10 , Pascal Chanu11 , Arnab Mukherjee2,  
Cyrus Ghobadi6*,* and International Consortium for Innovation and Quality in Pharmaceutical 
Development (IQ) Real-World Data Working Group

Since the 21st Century Cures Act was signed into law in 2016, real-world data (RWD) and real-world evidence 
(RWE) have attracted great interest from the healthcare ecosystem globally. The potential and capability of RWD/
RWE to inform regulatory decisions and clinical drug development have been extensively reviewed and discussed 
in the literature. However, a comprehensive review of current applications of RWD/RWE in clinical pharmacology, 
particularly from an industry perspective, is needed to inspire new insights and identify potential future opportunities 
for clinical pharmacologists to utilize RWD/RWE to address key drug development questions. In this paper, we 
review the RWD/RWE applications relevant to clinical pharmacology based on recent publications from member 
companies in the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) RWD 
Working Group, and discuss the future direction of RWE utilization from a clinical pharmacology perspective. A 
comprehensive review of RWD/RWE use cases is provided and discussed in the following categories of application: 
drug–drug interaction assessments, dose recommendation for patients with organ impairment, pediatric plan 
development and study design, model-informed drug development (e.g., disease progression modeling), prognostic 
and predictive biomarkers/factors identification, regulatory decisions support (e.g., label expansion), and synthetic/
external control generation for rare diseases. Additionally, we describe and discuss common sources of RWD to help 
guide appropriate data selection to address questions pertaining to clinical pharmacology in drug development and 
regulatory decision making.

Real-world data (RWD) and real-world evidence (RWE) have 
gained broad attention in recent years, given their potential and 
capability to inform clinical drug development and regulatory de-
cision making. Sources of RWD have evolved and expanded from 
the traditional electronic health records (EHRs), medical and 
pharmacy claims, disease and medical product registries, and ob-
servational clinical study data to include unstructured data sources 
(e.g., physician notes processed by natural language processing), 
novel data types (e.g., genomics data and diagnostic imaging), 
and patient/individual-generated data from wearable devices and 

social media.1 RWE derived from RWD is considered a comple-
ment/supplement to the gold-standard randomized controlled 
trials (RCTs), adding valuable features, such as greater patient 
heterogeneity and long-term outcomes in a typical care setting.2 
RWD/RWE have long been used by health authorities to assess 
post-approval drug safety (e.g., Sentinel System) and, more re-
cently, they have also attracted users and participants in other parts 
of the healthcare ecosystem, such as biopharmaceutical companies, 
payers, providers, and patients.3 Legislation and regulatory poli-
cies are key factors that contributed to the increased interest and 
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applications of RWD/RWE. The 21st Century Cures Act (2016) 
and the subsequent sixth Prescription Drug User Fee Act (PDUFA 
VI; 2017) required the US Food and Drug Administration (FDA) 
to assess the potential use of RWE to support new indication 
approvals and post-approval study requirements and to initiate 
activities to address key issues in using RWE to make regulatory 
decisions, respectively.4,5 Pursuant to this federal mandate, the 
FDA released the “Framework for FDA’s Real World Evidence 
Program” in 2018, which outlines how the FDA plans to imple-
ment its RWE Program and provides formal definitions for RWD 
and RWE.6 Since then, the FDA has issued a series of RWD/RWE-
related draft guidance documents focusing on data sources, data 
standards, and regulatory considerations, and published related 
commentaries as well.7–9 Most recently, the FDA announced its 
Advancing Real-World Evidence Program, where one of the pri-
mary goals is to identify approaches for generating RWE in sup-
port of labeling claims, including new indications, populations, 
or dosing.10 Beyond the United States, global health authorities, 
such as the European Medicines Agency (EMA) and the Japan 
Pharmaceuticals and Medical Devices Agency (PMDA), have also 
shared their vision and perspectives on the application of RWD/
RWE for regulatory decision making.11–13

Besides regulatory applications, from an industry perspective, 
RWD can also benefit drug development at various stages. A recent 
publication gave a comprehensive review of RWD/RWE applica-
tions and their potential to inform decision making throughout 
the drug development process.14 However, to our knowledge, there 
are very few publications reviewing RWD/RWE applications in 
clinical pharmacology,15–17 especially from a drug development 
perspective.17 In this paper, we review and discuss how RWD/
RWE have been, and can be, used to address questions relevant to 
clinical pharmacology from an industry point of view, based on 
recent publications from member companies in the International 
Consortium for Innovation and Quality in Pharmaceutical 
Development (IQ) RWD Working Group. Specifically, this paper 
reviews case examples mainly in the following three categories: (i) 
utilization of RWD to address core clinical pharmacology ques-
tions (e.g., drug–drug interaction (DDI) risk assessment and dose 
selection in special populations, including patients with organ im-
pairments and pediatrics), (ii) utilization of quantitative clinical 
pharmacology and model-informed drug development (MIDD) 
as tools to analyze RWD and generate RWE (e.g., natural history 
characterization via disease progression modeling and prognostic 
factors identification), and (iii) utilization of RWE as a parallel 
source of evidence supplementing quantitative clinical pharmacol-
ogy/MIDD and/or RCTs to support drug development decisions 
and regulatory approvals (e.g., label expansion). We also include 
multiple case examples in which RWD/RWE were used to gener-
ate synthetic/external control for rare diseases, which is a topic of 
broader scientific interest but still pertinent to clinical pharmacol-
ogy. Key elements of each of the case examples are summarized in 
Table 1. We also illustrate example RWD applications to inform 
decisions throughout product development stages with clini-
cal pharmacology-related applications highlighted in Figure 1. 
Finally, we discuss strengths, limitations, and key data elements 
for commonly used sources of RWD (e.g., EHRs, medical and 

pharmacy claims, and patient registries) to guide the selection of 
appropriate RWD to investigate clinical pharmacology questions 
in drug development and approval.

GUIDE DRUG–DRUG INTERACTION ASSESSMENT
In clinical practice, adverse events caused by DDIs may lead to 
increased morbidity, hospitalization, prolonged hospital stays, or 
worsened outcomes.18 Assessing the risk of DDIs is crucial when 
designing clinical trials, because it can impact concomitant medi-
cation inclusion/exclusion criteria, patient recruitment, exposure 
variability, etc. As such, it is important to contextualize the elim-
ination profile and potential DDIs for an investigational drug in 
its target indication prior to dosing patients. Toward this end, real-
world polypharmacy data can be applied to strategically integrate 
findings from early translational medicine studies that evaluate 
an investigational drug’s DDI risk profile to define the inclusion/
exclusion criteria for concomitant medications in clinical trials 
in patients. The value of this approach has been illustrated in an 
investigational molecule being developed for the treatment of pso-
riasis (unpublished findings). In this case, in vitro data indicated 
that the investigational molecule, which had not been evaluated in 
humans yet, was a CYP3A4 substrate and also a strong/moderate 
CYP3A4 inducer. So, there were two major DDI considerations: 
(i) strong/moderate CYP3A4 inhibitor or inducer concomitant 
medications administered with the investigational molecule could 
potentially alter the exposure of the molecule and thus confound 
the evaluation of the molecule’s exposure-response relation-
ship, and (ii) the investigational molecule as a potential strong/
moderate CYP3A inducer could lower the exposure of sensitive 
CYP3A4 substrate concomitant medications, which may reduce 
their efficacy. To have a realistic DDI risk assessment of the inves-
tigational molecule and inform clinical pharmacology strategy in 
clinical trial design, RWD from IBM Marketscan (a large, admin-
istrative US claims database) were used to derive the frequency of 
prescription claims for drugs that are considered strong/moderate 
CYP3A4 inhibitors/inducers and sensitive CYP3A4 substrates in 
the target patient population, and also derive their length of treat-
ment to determine the chronicity of polypharmacy. It showed that, 
in patients with psoriasis, the majority of prescriptions of sensi-
tive CYP3A4 substrates included corticosteroids, contraceptives, 
statins, and antibiotics, of which > 50% were used for > 90 days. 
Thus, it indicated a risk for the investigational molecule as a per-
petrator with the potential to limit the exposure and effectiveness 
of some chronically used CYP3A4 sensitive substrates (e.g., oral 
birth control pills and cardiovascular drugs). RWD also showed 
that up to 15% of patients with psoriasis had claims for at least 
one drug with CYP3A induction or inhibition potential, however, 
CYP3A4 victim potential of the investigational drug was of rela-
tively less concern because of the low chronic use (< 1%) of strong/
moderate CYP3A4 inducer/inhibitor concomitant medications 
within the psoriasis population. Given these findings, a clinical 
DDI substudy was included in the first-in-human healthy volun-
teer trial of this investigational molecule to evaluate its CYP3A4 
victim and perpetrator potentials. Results demonstrated that the 
molecule was not a strong CYP3A4 inducer, but it was a CYP3A4 
victim with the potential of > 3-fold change in exposure in the 
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Table 1  Summary of case examples in RWD clinical pharmacology applications

Category Reference Objective RWD source Insight/evidence generated

Guide DDI 
assessments

Unpublished 
data from 

Eli Lilly and 
Company

Determine the frequency and 
treatment duration of concomitant 

medication use in the target 
patient population

IBM Marketscan 
Claims Database

Informed realistic DDI evaluations based on the 
target patient population in the real-world setting 

and informed inclusion/exclusion criteria of 
concomitant medications use for patient studies

Duke et al. 
(2012)19

Identify and evaluate novel DDIs 
by combining a literature discovery 

approach with RWD analysis

Indiana Network 
for Patient Care 

database

Five new drug–drug pairs were identified with 
increased risk of myopathy, thus indicating 
clinically relevant DDIs through CYP3A4 and 

CYP2D6 enzymes

Lorberbaum 
et al. 

(2016)20

Develop a data-driven pipeline 
for discovering QT-DDIs using a 
combination of adverse event 
reports, EHRs, and laboratory 

experiments

FAERS and an EHR 
database at New 

York-Presbyterian/ 
Columbia University 

Irving Medical 
Center

Unanticipated QT-DDIs can be efficiently identified 
via data mining and laboratory experiments. 
Combination therapy with ceftriaxone and 

lansoprazole was associated with increased risk 
of acquired long QT syndrome

Yee et al. 
(2021)21

Identify transporter-mediated DDIs 
of 25 small molecule drugs being 
evaluated for COVID-19 treatment 
via in-vitro experiments and real-

world data

EHR data from 
UCSF Research 

Data Browser and 
Cerner Real World 

COVID-19 Database

Majority of the drugs were predicted to cause at 
least one clinical DDI. COVID-19 patients should 

be carefully monitored for adverse reactions likely 
to result from these DDIs

Inform dose 
recommen-
dation for 
patients 
with organ 
impairment

Sane et al. 
(2022)27

Assess the prevalence of hepatic 
impairment prior to first-line 

therapy in patients diagnosed with 
mCRPC or HR+/HER2− mBC

Flatiron Health EHR Provided evidence to justify the conduct of a 
pharmacokinetic study of ipatasertib in at least 

participants with mild hepatic impairment

Lu et al. 
(2020)28

Assess the feasibility of 
conducting dedicated organ 

impairment studies in patients 
diagnosed with DLBCL

Flatiron Health EHR Indicated a very challenging enrollment for 
a dedicated organ impairment study due to 

prevalence, leading to a waiver of the dedicated 
organ impairment studies from regulatory 

agencies

Spillane et al. 
(2020)29

Evaluate characteristics and 
outcomes in patients with organ 

impairment diagnosed with 
advanced melanoma and treated 

with an immune checkpoint 
inhibitor

Flatiron Health EHR Patients with advanced melanoma and baseline 
organ impairment have poorer clinical outcomes 

than patients with normal organ function

Sybing et al. 
(2022)30

Characterize the time course 
of glomerular hyperfiltration in 

pediatric and adult patients with 
SCD

Optum EHR Showed evidence of glomerular hyperfiltration in 
pediatric SCD patients and the rate of decline in 
adult SCD patients. Results could help clinicians 
in anticipating the need for dose adjustment due 

to renal impairment in SCD patients

Provide 
insights for 
pediatric plan 
development 
and study 
design

Chanu et al. 
(2020)32

Use RWD/RWE to supplement 
modeling work based on RCTs to 
optimize C.E.R.A. development 
in the confirmatory trial of the 

pediatric plan

IPDN database Confirmed the model simulated treatment 
outcomes in pediatric patients receiving C.E.R.A. 
i.v. and s.c. and provided a strong rationale for 
applying the C.E.R.A. S.c. dosing regimen only 
in pediatric patients rather than both i.v. and 

s.c., leading to- a simplified confirmatory trial in 
pediatrics

Zhang 
(2021)33

Evaluate the dose–response 
relationship of vedolizumab in a 

pediatric population with IBD using 
RWD to support dose selection 

for etrolizumab in pediatric clinical 
trials

Pediatric registry 
ImproveCareNow

Indicated that the majority of pediatric patients 
from the RWD database were treated with the 
equivalent adult labeled dose of vedolizumab 
and efficacy was similar or slightly better in 

the pediatric study cohort compared with that 
observed in adult clinical trials

Lukka et al. 
(2021)34

Support lacosamide dosing in 
the younger pediatric population 

(< 4 years old) where dose 
recommendations are not yet 

available

Real-world 
therapeutic drug 
monitoring data

Simulation-based dosing regimens for pediatrics 
derived via pharmacokinetic modeling of RWD 
assessed during clinical care to generate RWE 

and provide a rational basis for exposure-matched 
lacosamide pharmacotherapy in children < 4 years 

of age

 (Continued)
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Category Reference Objective RWD source Insight/evidence generated

Enable and 
enrich MIDD 
notably 
disease 
progression 
modeling

Doler et al. 
(2013)36

Jamalian  
et al. 

(2020)37

Develop a disease progression 
model to describe natural 
progression of Alzheimer’s 

disease

ADNI database Disease progression model was developed to 
quantitatively characterize the progression of 

the disease and can be used to predict natural 
disease progression in Alzheimer’s disease 

patients

Boucher  
et al. 

(2018)38

Investigate disease progression 
and treatment effect in patients 

diagnosed with hereditary 
transthyretin-mediated amyloid 
polyneuropathy, a rare disease

THAOS Relevant and consistent disease progression and 
treatment effects (of tafamidis) were estimated in 
an independent clinical trial and in patients from 

RWD

Wang et al. 
(2019)39

Model disease progression and 
identify risk factors for patients 

diagnosed with DMD, a rare 
disease

Cooperative 
International 

Neuromuscular 
Research Group DMD 
Natural History Study

Models adequately described disease 
progression for key end points in ambulatory and 

nonambulatory DMD boys

Abrams et al. 
(2020)40

Develop a QSP model to predict 
response for patients diagnosed 

with GD1

ICGG Gaucher 
Registry

Generated virtual patients that captured the 
appropriate disease phenotypes of interest with 
more accurate representation of their variability, 
which enabled the QSP modeling that captured 

specific clinical attributes of the disease, 
incorporated markers of disease severity, and 

informed relevant treatment strategies

Chanu et al. 
(2021)42

Use M-protein dynamics as an 
early time biomarker to predict 
OS for patients diagnosed with 

multiple myeloma

Flatiron Health EHR Model built with RWD can inform drug 
development in multiple myeloma; e.g., predict 

survival outcomes of multiple independent Phase 
iii trials leveraging M-protein dynamics collected 

in a smaller early phase trial

Kotani et al. 
(2021)43

Use RWD to check survival 
distribution from clinical trial used 

to develop a disease model for 
HER2–/HR+ mBC

Flatiron Health EHR Survival data from RWD is consistent with the one 
from the clinical trial used to develop the disease 

model

Identify 
prognostic 
and predictive 
biomarker/
factors

Julian et al. 
(2022)44

Investigate prognostic factors 
of OS in patients with advanced 

aNSCLC and develop a novel 
prognostic model

Flatiron Health EHR A prognostic model in patients with aNSCLC 
receiving anti-PD1/PD-L1 immune checkpoint 

inhibitors as second line monotherapy was 
developed using RWD with 42 important prognostic 
factors identified. The prognostic model was able 
to discriminate overall survival and perform well in 

real-world and clinical trial cohorts

Yun et al. 
(2021)45

Identify patients who may respond 
better to a specific drug or 

mechanism of action

ACR’s RISE registry Supported better understanding of disease and 
treatment response and identified/confirmed 

treatment benefit differentiation factors

Support 
regulatory 
decision mak-
ing for label 
expansion

Erdman et al. 
(2021)50

Provide evidence of efficacy 
and safety of tacrolimus-based 

immunosuppressive regimens in 
adult lung transplant recipients in 

the United States

SRTR database Supported the use of two tacrolimus 
combinations as maintenance 

immunosuppressive regimens in adult lung 
transplant recipients and supported the 

expansion of the product label to include lung 
transplantation

Wedam et al. 
(2020)51

Kraus et al. 
(2020)50

Provide evidence of safety and 
effectiveness of palbociclib plus 
ET in men with HR+/HER2– mBC

Flatiron Health EHR, 
Claims databases 

(Pharmacy and 
Medical), and 

Post-marketing 
surveillance

RWD indicated that men with mBC benefit 
from palbociclib plus ET, with a safety profile 

consistent with previous observations in women 
with mBC; combined with the collective data 
in women supported by RWE, the palbociclib 
indication was expanded to include men with 

HR+/HER2− mBC in the United States

Lamba et al. 
(2017)54

Cohen et al. 
(2021)55

Provide comparative RWE for 
the IR and PR formulations of 

tofacitinib in RA patients

CorEvitas registry 
(formerly Corrona)

RWD provided key supportive evidence, in addition 
to model-based bridging and clinical trial data, for 

the marketing application and subsequent approval 
of a PR formulation of tofacitinib in the European 
Union (EU) as part of the totality of evidence to 

bridge efficacy and safety data from a previously 
approved IR tablet formulation

Table 1  (Continued)
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presence of strong CYP3A4 perpetrators. Combining the con-
comitant medications’ information from RWD and findings 
from the human DDI substudy, it was decided to exclude the use 
of concomitant medications that were strong CYP3A4 inducers/
inhibitors in clinical trials of this investigational molecule in pa-
tients with psoriasis. Taken together, RWD/RWE-informed early 
DDI evaluations can help generate a seamless clinical pharmacol-
ogy strategy to inform the study design of clinical trials in healthy 
volunteers (e.g., DDI substudy) and in patients (e.g., concomitant 
medication exclusion).

In addition, RWD combined with other relevant data (e.g.,  
in vitro or experimental data, published literature, and clinical da-
tabases) have the potential to identify clinically relevant DDI risks. 
For example, Duke et al. identified potential drug–drug pairs that 
could result in an adverse event of myopathy due to CYP enzymes-
based interactions (as either a substrate or inhibitor) when co-
administered. First, authors identified an initial set of 13,197 

potential drug pairs predicted to have DDI potential based on 
published in vitro pharmacology experiments.19 Then, they iden-
tified 3,670 drug pairs taken by patients in the real world based on 
analysis of a clinical repository containing over 800,000 patients. 
Finally, based on rigorous statistical evaluation, five new drug–
drug pairs were identified which had increased risk of myopathy, 
thus demonstrating clinically relevant DDIs through CYP en-
zymes. Authors conclude that similar automated search algorithm 
may be beneficial in identifying additional clinically significant in-
teractions of the FDA approved drug by leveraging published data 
and large RWD clinical databases. Another example identified that 
combination therapy with ceftriaxone and lansoprazole increased 
the risk of acquired long QT syndrome.20 Investigators identified 
889 drug combination pairs signaling QT risk in the FDA Adverse 
Event Reporting System (FAERS) with 1.8 million QT prolonga-
tion adverse events that could not be attributed to individual ef-
fect of the drugs. An EHR database with an additional 1.6 million 

Category Reference Objective RWD source Insight/evidence generated

Generate  
synthetic/
external  
control for 
rare diseases

CDER 
(2017)60

Characterize the natural history 
of patients diagnosed with 

metastatic MCC treated with 
chemotherapy

Observational 
study consisting 
of a multicenter 

retrospective chart 
review of patients 

treated with 
chemotherapy for 
distant metastatic 

MCC

Provided response rates to chemotherapy 
treatment allowing exploratory characterization of 
the risk:benefit profile of avelumab in the context 

of the natural history of MCC and treatment 
outcomes with cytotoxic chemotherapy

CDER 
(2018)61

Compare blinatumomab treated 
patients with historical control 

with respect to RFS

A noninterventional 
retrospective 

analysis of RFS and 
OS among patients 
with Philadelphia 

chromosome-
negative ALL and 
MRD ≥ 0.01% who 
received standard-
of-care treatment

Improved survival probability on blinatumomab 
relative to historical control calculated based on 

propensity scores for each patient

Popat et al. 
(2022)62

Assess comparative effectiveness 
of pralsetinib in NSCLC by 

combining RWD and trial data; 
performed sensitivity analyses to 
quantify effect of sources of bias

FMI CGDB Provided evidence in favor of pralsetinib over 
other treatments as an effective first line 

treatment for RET fusion-positive aNSCLC. Bias 
assessments showed robustness to potential 
sources of bias and can be used as a template 

for future studies

Ayodele et al. 
(2021)63

Chen et al. 
(2020)64

Investigate eGFR changes in 
hypoparathyroidism patients 

treated with rhPTH(1–84) relative 
to SOC treatment

US Explorys EHR 
database;

Geisinger Healthcare 
database

eGFR was stable in rhPTH(1–84) treated patients 
from clinical trials but declined in the historical 

control/SOC group

Gosmanova 
et al. 

(2021)65

Explore risk of CKD in 
hypoparathyroidism patients 

treated with rhPTH(1-84)

US Explorys EHR 
database

Patients treated with rhPTH(1-84) in long-term 
clinical trials had lower risk of CKD than historical 

control

ADNI, Alzheimer’s Disease Neuroimaging Initiative; ALL, acute lymphoblastic leukemia; aNSCLC, advanced non-small cell lung cancer; CDER, Center for Drug 
Evaluation and Research; C.E.R.A., Continuous Erythropoietin Receptor Activator; CGDB, Clinico-genomic database; CKD, chronic kidney disease; COVID-19, 
coronavirus disease 2019; DDI, drug-drug interaction; DLBCL, diffuse large B-cell lymphoma; DMD, Duchenne muscular dystrophy; eGFR, estimated glomerular 
filtration rate; EHRs, electronic health records; ET, endocrine therapy; FAERS, US Food and Drug Administration Adverse Event Reporting System; FMI, Flatiron 
Health Foundation Medicine; GD1, Gaucher disease type 1; IBD, irritable bowel disease; ICGG, International Collaborative Gaucher Group; IPDN, International 
Pediatric Dialysis Network; IR, immediate release; mBC, metastatic breast cancer; MCC, Merkel cell carcinoma; mCRPC, metastatic castrate-resistant prostate 
cancer; MIDD, model-informed drug development; MRD, minimal residual disease; OS, overall survival; PR, prolonged release; QSP, quantitative systems 
pharmacology; RA, rheumatoid arthritis; RCT, randomized controlled trial; RFS, relapse-free survival; RISE, Rheumatology Informatics System for Effectiveness; 
RWD, real-world data; RWE, real-world evidence; SCD, sickle cell disease; SOC, standard-of-care; SRTR, Scientific Registry of Transplant Recipients; THAOS, 
Transthyretin Amyloidosis Outcomes Survey; UCSF, University of California, San Francisco.

Table 1  (Continued)
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electrocardiogram records from 380,000 patients was used to nar-
row down the identified DDI pairs to 8 combinations, including 
the ceftriaxone and lansoprazole combination. Then, patch clamp 
experiments were conducted and revealed significant human ether-
a-go-go related gene channel inhibition by the synergistic effect of 
this drug combination. This example highlights the use of RWD 
to identify a novel DDI risk and then laboratory experiments to 
elucidate the mechanisms of the DDI. Another recent example 
during the coronavirus disease 2019 (COVID-19) pandemic ex-
emplifies how in vitro experiments followed by confirmation from 
RWD analysis identified clinically relevant transporter-mediated 
DDIs for 25 small molecule drugs evaluated in clinical trials for 
COVID-19.21 Authors analyzed EHR data from the University 
of California, San Francisco (UCSF) Research Data Browser and 
Cerner Real World COVID-19 Database to confirm that the in 
vitro transporters medicated DDI risks were consistent with the 
RWD. Thus, they recommended that vulnerable patients diag-
nosed with COVID-19 (i.e., geriatric patients with polypharmacy 
risk) should be carefully monitored for adverse drug reactions due 
to transporter-mediated DDIs for the drugs being evaluated expe-
ditiously for COVID-19 at that time.

INFORM DOSING RECOMMENDATIONS IN PATIENTS WITH 
ORGAN IMPAIRMENT
Understanding the impact of organ impairment on drug exposure, 
safety, and efficacy is crucial to guide dosing recommendations 
and adjustments in these populations. These dose adjustments 

are typically based on exposure changes due to organ impairment, 
which can be characterized using either dedicated pharmacoki-
netic (PK) studies or modeling and simulation approaches. It is a 
typical practice in drug development to explicitly exclude partic-
ipants with advanced organ impairment from phase II and phase 
III trials. In a few cases, dedicated efficacy and safety studies in 
patients with organ impairment are conducted.22–26 In general, 
enrolling participants with organ impairment is challenging irre-
spective of the study type, especially for those with moderate and 
severe organ impairment. RWD/RWE can be used in this space 
in multiple ways: (i) informing the need for organ impairment 
studies, (ii) evaluating the feasibility of characterizing exposure 
changes of the investigational drug in target patient populations 
with organ impairment, (iii) generating post-approval efficacy and 
safety data to guide dosing in patients with organ impairment, and 
(iv) assessing the time course of organ impairment progression.

Dosing recommendations for patients with organ impairment 
are typically required if the drug is likely to be used in patients with 
organ impairment. RWD can be used to assess the prevalence of 
organ impairment in the target patient population in cases where 
organ impairment is not a comorbidity in a significant portion of 
the target population, which can be used to inform the need to con-
duct dedicated organ impairment studies. Sane et al.27 conducted 
a retrospective analysis using Flatiron Health EHR data to assess 
the prevalence of hepatic impairment prior to first-line therapy in 
patients diagnosed with metastatic castrate-resistant prostate can-
cer (mCRPC) and hormone receptor positive/human epidermal 

Figure 1  Example applications of real-world data to inform decisions throughout product development.
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growth factor receptor 2 negative (HR+/HER2−) metastatic 
breast cancer (mBC). Using the National Cancer Institute Organ 
Dysfunction Working Group (NCI-ODWG) classification crite-
ria, the proportions of patients with mild and moderate-to-severe 
hepatic impairment were 12.4% and 0.7%, respectively, in the 
mCRPC cohort, and 18.8% and 1.4%, respectively, in the HR+/
HER2– mBC cohort. Based on this, the study team concluded 
that mild hepatic impairment is a relatively common comorbidity 
in patients with mCRPC and HR+/HER2– mBC, whereas the 
prevalence of moderate to severe hepatic impairment is low in this 
patient population. This analysis provided the evidence to inform 
internal decision making regarding the need to conduct a PK study 
for the investigational drug in participants with at least mild he-
patic impairment.

RWD can also be used to assess the feasibility of characterizing 
drug exposure changes in patients with organ impairment in the 
target patient population when it is not ethical to administer the 
drug to participants with organ impairment who are otherwise 
healthy. This can be achieved by either conducting a dedicated PK 
study in patients with organ impairment or allowing the enroll-
ment of patients with organ impairment in phase II and phase III 
studies. For example, to assess the feasibility of conducting dedi-
cated organ impairment studies in patients diagnosed with diffuse 
large B-cell lymphoma (DLBCL), an exploratory analysis was per-
formed using RWD on previously untreated patients with DLBCL 
(n = 1,341) extracted from the Flatiron Health database.28 A rela-
tively low percentage of patients with DLBCL with moderate or 
severe hepatic impairment (< 6%) or with severe renal impairment 
(< 6%) were found in the database, indicating a very challenging 
enrollment for a dedicated organ impairment study. In addition, 
the analysis showed that the study population in phase II/III tri-
als cover the majority (> 90%) of the previously untreated patients 
with DLBCL in the Flatiron RWD, and a dedicated hepatic/renal 
impairment study would be of limited added value. Therefore, 
regulatory agencies agreed with the sponsor’s proposal to not con-
duct dedicated organ impairment studies, which reduced costs, 
patient burden, and development timelines. However, one limita-
tion of this RWD study was that the data included only patients 
with DLBCL who received first-line therapy because there were 
no data available for relapsed/refractory patients, which was the 
target population. In addition, it should be noted that the eventual 
labeling recommendation states that drug administration should 
be avoided in patients with moderate or severe hepatic impairment 
due to lack of data in this special population.

In addition, RWD can be used to provide cumulative evidence 
about safety and efficacy outcomes in patients with organ impair-
ment following approval of an investigational agent. This can apply 
to the above example where such information can be generated for 
patients with moderate to severe hepatic impairment as well as 
severe renal impairment after the initial approval, which can be 
used to inform dosing recommendations in these patients. Spillane 
et al.29 used RWD to evaluate the use of immune checkpoint in-
hibitors (ICIs) approved for advanced melanoma management 
in patients with organ dysfunction. They conducted a retrospec-
tive analysis using Flatiron Health EHR to identify patients with 
melanoma who received ICIs as the first line of treatment. A total 

of 2,407 patients were identified, of which 2.4% had a baseline of 
moderate or severe renal impairment, and 2.8% had a baseline of 
moderate or severe hepatic impairment. The analysis showed that 
patients with advanced melanoma and baseline organ impairment 
have poorer clinical outcomes (i.e., shorter real-world time to treat-
ment discontinuation and overall survival) than patients with nor-
mal organ function. This information may be used to evaluate the 
need of dose adjustment in the organ impairment population.

RWD can also be an effective tool in assessing the time course of 
organ impairment progression, especially in certain rare diseases, 
and subsequently guiding clinicians on the timing of dose adjust-
ment with respect to organ impairment. Sybing et al.30 used RWD 
to characterize the time course of glomerular hyperfiltration (de-
fined as higher-than-normal renal filtration rate) in pediatric and 
adult patients with sickle cell disease (SCD), which is a driver of 
renal impairment in later years. The onset and peak of glomerular 
hyperfiltration, and subsequent decline in renal function in pa-
tients with SCD, were characterized using RWD from the Optum 
EHR database. The analysis showed that hyperfiltration was ob-
served in hemoglobin (Hb) SS genotype (the common type of 
SCD) patients with SCD as early as 1 year of age and peaked be-
tween 8 and 10 years of age. Hyperfiltration declined steadily with 
age in Hb SS patients, and after 40–50 years of age, the estimated 
glomerular filtration rate fell below that for the non-SCD popula-
tion. This was the first analysis showing evidence of glomerular hy-
perfiltration in pediatric patients with SCD and the rate of decline 
in adult patients with SCD using RWD and is deemed useful for 
clinicians by helping anticipate the need for dose adjustment due 
to renal impairment in patients with SCD.

SUPPORT PEDIATRIC PLAN DEVELOPMENT AND DOSING 
OPTIMIZATION
Pediatric dosing is often extrapolated from adults using exposure 
matching approach with limited information on the physiologi-
cal, anatomic, and ontogeny-based differences between pediatric 
and adult populations. The recent draft International Conference 
on Harmonization (ICH) harmonized guideline E11A on pedi-
atric extrapolation recommends leveraging multiple sources of 
information to contribute to the clinical evidence package, and 
the use of RWD is encouraged and discussed.31 In the case stud-
ies detailed below, RWD were leveraged to support pediatric drug 
development and dose selection in multiple ways by confirming 
model-based inferences, by leveraging competitor data, or by ex-
ploring pediatric population for which no dose recommendations 
were yet available.

Chanu et al.32 used RWD/RWE to supplement modeling based 
on RCTs to optimize pediatric development plan and the con-
firmatory trial design for Continuous Erythropoietin Receptor 
Activator (C.E.R.A.). The initial pediatric plan was designed as a 
phase II dose-finding study using C.E.R.A. administered intrave-
nously (i.v.) followed by a large confirmatory trial using C.E.R.A. 
dosed via both i.v. and subcutaneous (s.c.) injection along with a 
comparator arm. The plan was then optimized using a model-based 
PK/pharmacodynamic (PK/PD) analysis confirmed by RWD to 
reduce the confirmatory trial to a smaller, single arm trial with only 
s.c. C.E.R.A. The PK/PD model was built with data from a phase 
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II pediatric i.v. study and phase II/III adult studies to determine 
the PK/PD characteristics of C.E.R.A. administered i.v. and s.c. in 
a broader population. RWD on C.E.R.A. doses and Hb levels ob-
tained from the International Pediatric Dialysis Network (IPDN) 
registries confirmed the model-predicted treatment outcomes in 
pediatric patients receiving C.E.R.A. i.v. and s.c. This provided a 
strong rationale for testing the C.E.R.A. s.c. dosing regimen only 
rather than both i.v. and s.c. in pediatric patients. Therefore, the 
confirmatory trial was re-designed and simplified, which reduced 
unwarranted drug exposure and treatment burden for children and 
shortened timelines to bring C.E.R.A. sooner to pediatric patients. 
One limitation of this study is that only summary level (not patient 
level) RWD were used to compare with model predicted data (i.e., 
model-based simulations as median and 90% prediction interval 
were compared with median of observed value in RWD). For fur-
ther evaluation purpose, the sponsor has also launched a prospec-
tive RWD study to collect patient level data.

In another example, RWD from pediatric patients with off-
label use of a competitor drug were used to inform pediatric dose 
selection and the development plan for an investigational drug. 
Etrolizumab, a humanized monoclonal antibody, was under clin-
ical development for inflammatory bowel disease (IBD). One of 
etrolizumab’s mechanisms of action is shared with vedolizumab, 
which has already been approved for adults with IBD. RWD from 
pediatric patients treated with vedolizumab (off-label use) from 
the ImproveCareNow (ICN) registry (the largest pediatric IBD 
registry) were used to characterize the dose–response relationship 
and provide additional evidence in support of dose selection for 
etrolizumab in pediatric clinical trials.33 The results indicated that 
the majority of pediatric patients from the RWD database were 
treated with doses equivalent to the adult labeled dose of vedoli-
zumab, and the efficacy was similar or slightly better in pediatric 
cohorts compared with that observed in adult pivotal clinical tri-
als. The key limitation of this study was related to the dosing data. 
This is because vedolizumab doses (off-label use) in pediatric pa-
tients are not standardized in real-world settings (e.g., some doses 
are fixed while others are body weight-based) and dose disparity 
as dose can be confounded by disease severity (i.e., more severe 
patients are likely to be given higher doses as compared with less 
severe patients), both of which may introduce bias in the analysis.

RWD were also used to support dosing in younger pediatric 
populations where dose recommendations are not yet available. 
For instance, lacosamide, an anti-epileptic drug, is approved for the 
treatment of focal seizures in children ≥ 4 years of age and adults. 
Researchers used real-world therapeutic drug monitoring data 
from 315 pediatric patients (> 1 month to < 18 years of age) who 
received lacosamide to build a population PK model with allome-
tric scaling of body weight and covariate analysis (age included).34 
The model was used to simulate lacosamide exposure for age-
associated doses to match the exposure in children ≥ 4 years of age 
with the weight-based dosing recommendations provided by the 
FDA. Using this approach, the authors provided dose recommen-
dations for children aged 1 month to < 4 years old. Potential lim-
itations of this study included imbalance in patient representation 
across age groups, co-medications, and a higher variability in drug 
dosing and follow-up timing in the RWD.

ENABLE AND ENRICH MODEL-INFORMED DRUG 
DEVELOPMENT NOTABLY DISEASE PROGRESSION 
MODELING
The use of quantitative methodologies and MIDD in clinical 
pharmacology has exponentially increased in the past decade 
to guide decision making in drug development and approval.35 
Approaches such as pharmacometric modeling and quantitative 
systems pharmacology (QSP) modeling have allowed research-
ers to answer questions that cannot be addressed by traditional 
clinical pharmacology or statistical approaches. The increasing 
availability and accessibility of RWD has expanded the capabil-
ities of modeling in a multifaceted manner. RWD can be used for 
model development (e.g., alone or in combination with clinical 
trial data), model validation (e.g., external data source to validate a 
model built with only clinical trial data), and in support of model 
building and evaluation (e.g., inform virtual population genera-
tion in QSP modeling).

Notably, RWD/RWE provide insights into disease progression 
by capturing information on real-world patients in the real-world 
setting. Unlike clinical trials, which provide a snapshot of a patient’s 
journey, RWD with long follow-up can better capture the natural 
history of a disease and/or disease progression as well as potential 
risk factors which may influence disease progression. For instance, 
researchers developing models to complement drug development 
efforts for Alzheimer’s disease used RWD from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database alone or to-
gether with placebo data from interventional clinical trials, to pre-
dict disease progression.36,37 By predicting individual trajectories 
of disease progression in the absence of treatment, the model can 
reliably assess drug effects for molecules in development and can 
be leveraged for study design of future clinical trials. Use of an 
RWD patient cohort allowed for a larger sample size, more diverse 
patient population, and longer follow-up compared with a clini-
cal trial. Combining clinical trial data with RWD allowed a richer 
dataset for model building, and conducting external validation 
with clinical trial data also helped assess predictive performance of 
the model.37 RWD may be particularly valuable to characterizing 
disease progression in rare diseases, where clinical trial size is lim-
ited by the small patient pool. Boucher et al.38 used RWD from the 
Transthyretin Amyloidosis Outcomes Survey (THAOS) to inves-
tigate the natural history of disease progression as well as treatment 
effect in patients diagnosed with hereditary transthyretin amyloid 
polyneuropathy. Similarly, using an existing Duchenne muscular 
dystrophy (DMD) natural history database, researchers built in-
dependent longitudinal models for the North Star Ambulatory 
Assessment total score for ambulatory boys and for the forced vital 
capacity percent predicted value for non-ambulatory boys to char-
acterize disease progression of DMD and identified risk factors 
having a significant effect on outcomes in boys diagnosed with this 
disease.39 These models informed the quantitative understanding 
of disease progression in rare diseases, and simulation results from 
the models could then contribute to the study design of future clin-
ical trials to accelerate clinical drug development.

Besides disease progression models, RWD can be used to enrich 
and enable other types of models to inform drug development. For 
example, a QSP model for Gaucher disease type 1 (GD1) was built 
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with the intention to predict treatment response within the hetero-
geneous GD1 patient population.40 Researchers in this study were 
able to use data from a variety of sources, including RWD from 
the International Collaborative Gaucher Group (ICGG) Gaucher 
Registry. This registry consists of more than 6,000 patients with 
Gaucher disease across more than 60 countries, allowing for inte-
gration and evaluation of response from more diverse and repre-
sentative patient populations relative to those enrolled in clinical 
trial settings. Although differences between registry and clinical 
trial data were identified, steps were taken to reduce bias when 
using the registry data to generate virtual patients that capture 
the appropriate disease phenotypes of interest with more accurate 
representation of their variability. This in turn enabled the QSP 
modeling that captured specific clinical attributes of the disease, 
incorporated markers of disease severity, and allowed development 
of relevant treatment strategies.

In addition, there is a well-established modeling and simulation 
framework in oncology that links dose, exposure, tumor dynam-
ics, and overall survival (OS).41 The link between tumor dynamic 
and OS is disease-specific and drug-independent. Tumor growth 
inhibition (TGI) metrics can be used to capture treatment effect 
and predict the OS benefit in this TGI-OS disease modeling 
framework. In recent years, RWD have been used to model TGI 
and its relationship to OS, enabling early efficacy predictions 
based on tumor dynamics for molecules of interest. For example, 
Chanu et al.42 recently presented data where researchers utilized 
a serum-based marker for tumor burden (M-protein) and OS data 
from Flatiron Health to build a drug-independent disease model 
for multiple myeloma. This disease model can support drug de-
velopment in multiple myeloma by predicting OS based on early 
M-protein dynamics data obtained for a new investigational drug. 
For instance, it could be used to simulate OS benefits vs. standard 
of care complementary to observed progression-free survival ob-
tained in a randomized pivotal trial, or assess the probability of 
success of a trial investigating a new treatment over a reference 
treatment leveraging M-protein dynamics collected in a smaller 
phase I or phase II trial. In a similar context, for the development 
of a TGI-OS model in patients with HR+/HER2– mBC based on 
clinical trial data, real-world OS data from Flatiron Health were 
used to ensure the OS distribution used to develop the model was 
representative of the real world population, thus verifying model 
relevance for drug development in the target population and real 
world setting.43 One challenge with the use of RWD in oncology 
for modeling purposes is that patients are followed along several 
lines of therapies and it is important to have a systematic and con-
sistent way to select the right line of therapy in each patient that is 
relevant to the drug development question.

IDENTIFY PROGNOSTIC AND PREDICTIVE BIOMARKERS/
FACTORS
RWD can be leveraged to identify factors for disease prognosis or 
to elucidate increased treatment benefit via modeling approaches, 
which can inform patient subpopulation classification of either 
high-medical need or high-benefit potential. To enhance clinical 
utility, data from clinical studies are often combined with data 
from real-world sources to either establish or validate prediction 

models. For example, Julian et al.44 utilized a retrospective obser-
vational patient cohort with advanced non-small cell lung cancer 
(NSCLC) from the Flatiron Health database to develop a novel 
prognostic model to identify disease prognostic factors for OS. A 
Cox proportional hazards survival model was built with RWD 
from 4,049 patients with advanced NSCLC on selected second 
line anti-PD1/PDL1 monotherapy (atezolizumab, nivolumab, or 
pembrolizumab). The ability of the established prognostic model 
to predict OS differentiation was then validated using a patient 
cohort treated with second line atezolizumab monotherapy from 
an independent RCT. With this validated prognostic model of 
OS, multiple prognostic factors (e.g., baseline demographics, clin-
ical characteristics, and laboratory results) that enhance or reduce 
risk of death were identified, which can be used to support future 
research on patient prognostic prediction.

In addition, Yun et al.45 presented an example of using RWD 
to validate a previously established treatment responder identi-
fication model built with clinical trial data. Based on sarilumab 
clinical trial data, a laboratory results-based rule to identify 
patients with rheumatoid arthritis (RA) with a more favorable 
response to sarilumab was established via a machine learning 
approach. Two hundred five sarilumab users were then iden-
tified from the American College of Rheumatology (ACR)’s 
Rheumatology Informatics System for Effectiveness (RISE) data 
from 2017 to 2021 based on prespecified inclusion/exclusion 
criteria. Logistic regression indicated that better sarilumab re-
sponses were demonstrated in rule-positive patients compared 
with those in rule-negative patients in the real-world setting. 
This RWD application illustrated the use of RWE to understand 
disease and treatment response and identify/confirm treatment 
benefit differentiation factors.

SUPPORT REGULATORY DECISION MAKING AND LABEL 
EXPANSION
Currently, substantial evidence from adequate and well-controlled 
clinical studies, typically consisting of RCTs, is required for drug 
licensing and regulatory approval.46 However, other types of 
clinical studies, including single-arm trials, open-label trials, and 
meta-analyses supplemented by RWE, have been utilized for drug 
approval in limited instances, such as in rare diseases. Under the 
Cures Act, the FDA’s RWE Program evaluates the potential use 
of RWD to generate RWE on product effectiveness to help sup-
port label expansion with new indications, populations, or dos-
ing for approved drugs, and the role of RWE in supporting label 
changes has been discussed in the literature.46–49 In this context, 
the examples below illustrate recent utilization of RWE for label 
expansion of new indications and new product formulation, with 
significant clinical pharmacology input in the totality of evidence 
required for such regulatory approvals.

RWD have been used to assess effectiveness of tacrolimus 
(TAC)-based immunosuppressive regimen combinations in adult 
lung transplant recipients, which is a patient population challeng-
ing to recruit in clinical trials. In this case, RWE was generated 
using retrospective analysis of the Scientific Registry of Transplant 
Recipients (SRTR) database (the most comprehensive database 
of transplant recipients in the United States). Analyses indicated 
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that lung transplant recipients who received a combination of TAC 
with mycophenolate mofetil or azathioprine at hospital discharge 
had high survival rates at 1-year post-transplant, supporting the use 
of TAC in these combinations as maintenance immunosuppression 
in adult lung transplant recipients. This RWE, along with evidence 
from pivotal RCTs of TAC and a meta-analysis report of three 
RCTs in patients with a lung transplant with TAC-based treat-
ment, provided totality of effectiveness and safety evidence that 
led to label expansion of TAC to include lung transplantation.50

Based on RWD, men with HR+/HER2– mBC were shown 
to benefit from palbociclib plus endocrine therapy (ET).51,52 
Palbociclib treatment in men with mBC was evaluated using three 
independent RWD sources: IQVIA Insurance database (pharmacy 
and medical claims, n = 1,139), Flatiron Health breast cancer data-
base (EHRs, n = 59), and a global safety database. RWE indicated 
that men with mBC benefit from palbociclib plus ET, with a safety 
profile consistent with previous observations in women with mBC. 
In addition to RWE, similar palbociclib exposures were demon-
strated in men and women using a population PK analysis.53 
Therefore, RWE together with previous pivotal clinical trials data 
and a well-established benefit/risk profile of palbociclib led to the 
palbociclib label expansion to include men with HR+/HER2− 
mBC in the United States.

RWE also supported the approval of a prolonged release (PR) 
formulation of tofacitinib in the European Union as part of total-
ity of evidence approach to bridge efficacy and safety data from 
a previously approved immediate release (IR) tablet formulation. 
Tofacitinib is an oral Janus kinase inhibitor that was initially ap-
proved globally as an IR oral tablet, at a dose of 5 mg twice daily, for 
adult patients with moderate to severe active RA, based on a tradi-
tional development program that included confirmatory phase III 
RCTs. The PR tablet formulation of tofacitinib was developed, at 
a dose of 11 mg, to provide a more convenient once daily dosing 
alternative. Following the approval of the PR tablet in the United 
States, based on comparative phase I PK data and an MIDD ap-
proach to bridge efficacy and safety in patients with RA,54 the PR 
formulation was included in the ongoing US registry (CorEvitas, 
formerly Corrona) initially used for the IR formulation. Limited 
clinical trial data with the PR formulation and the MIDD-based 
bridging were considered to be insufficient evidence for consid-
eration to approve the PR formulation in the European Union. 
The comparative effectiveness of the IR and PR formulations in 
patients with RA from the CorEvitas registry provided key sup-
portive evidence that subsequently resulted in product approval for 
the PR formulation in the European Union.55

GENERATE SYNTHETIC/EXTERNAL CONTROL FOR RARE 
DISEASE
RCTs, by definition, require a control intervention arm to accom-
pany the experimental intervention arm. The control intervention 
may be placebo or standard-of-care, if one exists. Randomization 
supports an unbiased comparison between the intervention arm 
and the control arm. Various practical and ethical factors can 
make patient recruitment and retention challenging for the con-
trol arm. This is especially true for rare diseases, where the eligible 
patient pool may be too small to adequately recruit for even the 

treatment arm. Some rare diseases may not have a standard-of-care 
established, and patients may be reluctant to join or remain in the 
placebo arm. In some cases, treatment with placebo may be uneth-
ical. Moreover, emerging evidence from an ongoing study could 
affect clinical equipoise due to, for instance, belief of clinical ben-
efit in the intervention arm.56 Because of these logistical and eth-
ical challenges, external control arms based on external data (e.g., 
RWD) may be considered as an alternative. An external control 
is based, at least in part, on external data, which refers to any rel-
evant source of clinical data not from a concurrently randomized 
control group within the same study.57 The external control may 
be selected patient cohorts from one or more external data sources 
and also modified using statistical methodologies, and it is also 
referred to as the synthetic control.58

External control arms based on RWD have been used to sup-
port regulatory filings.59 Avelumab was approved for the treatment 
of metastatic Merkel cell carcinoma, a rare skin cancer. Data from 
an EHR database were used to create an external control arm and 
were considered in the FDA review as an exploratory component 
to “further characterize the risk/benefit profile of avelumab.”60 
Another relevant example is blinatumomab, which is indicated 
for Philadelphia chromosome-negative relapsed or refractory B-
cell precursor acute lymphoblastic leukemia (ALL). Retrospective 
ALL patient data were used to construct an RWD-based external 
control using propensity matching and compared with RCT data 
from a single-arm efficacy study conducted for blinatumomab.61 
Various challenges (e.g., non-contemporaneous historical control 
and difference in follow-up duration), were identified as limiting 
factors for a reasonable comparison. The review concluded, “the 
propensity score analysis was not sufficient to determine the es-
timate of the benefit of blinatumomab.” Both reviews provided 
insights into how external controls may be used to support regula-
tory filings and highlighted data quality and analytical approaches 
which may maximize the utility and acceptance of external con-
trols by health authorities.

Use of external control arms has also been reported for other 
oncology drugs. Only 1–2% of all patients with NSCLC are re-
arranged during transfection (RET) gene fusion-positive, making 
this a rare mutation. A nonrandomized, open-label, uncontrolled 
study demonstrated that pralsetinib, a selective RET inhibitor, 
was efficacious in treatment-naïve RET fusion-positive patients. 
However, in this trial, efficacy of pralsetinib was not assessed in 
relation to other therapies. Popat et al.62 used RWD to construct 
an external control and demonstrated pralsetinib offered a survival 
benefit relative to other therapies. Importantly, the authors per-
formed various sensitivity analyses to quantify how various sources 
of bias in the RWD may impact the conclusions. Recent studies 
have also used external control arms to assess the long-term impact 
of treatment in rare endocrine diseases when a simultaneous long-
term control arm is either unethical or impractical.63–65

As with any other application of RWD, the quality of the data 
is a key factor in determining its usability, especially for regulatory 
purposes.66 Use of evolving statistical and analytical methods that 
quantify the impact of potential bias in the external control data 
are likely to improve the robustness of conclusions and increase 
confidence in the evidence generated.58
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CONSIDERATIONS FOR SELECTING COMMON SOURCES OF 
RWD TO ADDRESS CLINICAL PHARMACOLOGY QUESTIONS
Key information needed from RWD to address research ques-
tions related to clinical pharmacology often includes: (i) patient 
characteristics (e.g., age and sex), (ii) disease status (e.g., diagnosis, 
severity, duration, and staging), (iii) medications used (e.g., name, 
formulation, dose amount, frequency, duration, and prior lines 
of therapy), (iv) laboratory tests (e.g., test type, methods, and re-
sults), and (v) other diagnostic tests (e.g., biomarkers, genotypes, 
and tumor size). Common types of RWD that may provide this 
information include medical and pharmacy claims, patient-level 
data from EHRs, diagnostic laboratory tests, hospital chargemas-
ter records, disease or product registries, and patient surveys, as 
well as data from medical and mobile/wearable devices. Each type 
of RWD has strengths and limitations, and tradeoffs are often 
necessary when selecting a source of RWD for a study. Key at-
tributes, strengths, and limitations of the three common RWD 
sources (i.e., claims, EHRs, and patient registries) are summarized 
in Table 2 and discussed below. Common data elements found in 
different types of RWD are also summarized in Table 3.

Databases with claims from large employers or health plans (e.g., 
MarketScan and PharMetrics) can provide rich information about 
working-age adults but often exclude those covered by Medicaid, 
Medicare, or other government-sponsored programs in the United 
States. Conversely, claims data from government sources (e.g., 
Medicare 5% national sample) may contain important informa-
tion about adults over the age of 65 years, with permanent dis-
ability, or with certain chronic health conditions (e.g., end-stage 
renal disease) but often exclude those under the age of 65 years. To 
study diseases that span across ages and types of payers, such as in-
fections, it may be necessary to combine findings from multiple 
sources of RWD with different patient populations (e.g., commer-
cial claims + Medicare claims + Medicaid claims). Alternatively, 
researchers can consider an open network claims database that 
includes all payers (e.g., IQVIA Rx/Dx and Symphony Health), 
although these data sources often lack details about patient health 
insurance coverage status and contain only unadjudicated claims 
that may later be rejected by payers. A more general limitation for 
all claims databases is that they rely exclusively on clinical coding 
(e.g., International Classification of Diseases (ICD)-10 diagnosis 
codes) to convey health status, because claims are designed primar-
ily for billing purposes, and such coding may be inaccurate or im-
precise to identify or confirm a specific disease of interest. It can 
also be difficult to attribute specific healthcare encounters (e.g., of-
fice visit and hospital admission) to a single health condition when 
multiple diagnoses are present in the claims data.

Data from EHRs generally offer richer information about pa-
tient demographics (e.g., race, ethnicity, marital status, and occupa-
tion), lifestyle (e.g., smoking status, use of alcohol, and recreational 
drugs), medical history (e.g., vaccinations, family history, and lines 
of therapy), drug allergies, use of over-the-counter medications, 
vital signs (e.g., body mass index (BMI) and blood pressure), symp-
toms (e.g., severity, frequency, and duration), examination find-
ings, clinical reasoning (e.g., differential diagnosis), and treatment 
plan (e.g., specialist referral).67 However, researchers interested in 
using EHR data should be aware of several limitations. A general 

drawback of EHR data is that specific data elements (e.g., BMI) 
are often missing and it is unclear if this missingness pattern is ran-
dom. For example, a study found that BMI was more likely to be 
recorded in EHR data for patients with type 2 diabetes mellitus 
(T2DM) than those without T2DM.68 Because individuals with 
T2DM generally have a higher BMI, differences in data availability 
could bias comparisons of BMI between these two groups. EHR 
data may also contain conflicting or inaccurate information which 
is exacerbated with repeated measurements (e.g., large fluctuations 
in body weight over short time intervals may indicate a data entry 
error).69 Additionally, EHR databases are often limited to health-
care providers who use a specific type of EHR system or have a data 
sharing agreement and may therefore not include all health care 
received by a patient (e.g., EHR data may not include data from 
allied health providers who use a different EHR system). Data on 
medication use in EHRs generally reflects medications that are 
prescribed rather than dispensed and consumed. Although some 
EHR databases include results of basic laboratory tests (e.g., com-
plete blood cell counts and metabolic panel), limited information 
is available about the specific test methods used, and EHR da-
tabases generally do not contain detailed results about more ad-
vanced diagnostic tests (e.g., imaging, biopsies, and genotyping). 
It should also be noted that the unstructured EHR data (i.e., de-
tailed clinical notes) that may be of greatest interest to researchers 
often cannot be shared by data vendors due to privacy concerns. 
Biopharmaceutical companies must therefore rely on EHR data 
vendors to review, interpret, analyze, and summarize this informa-
tion on their behalf according to a study protocol and analytical 
plan; such studies can be very costly and must often be repeated for 
each disease of interest. Natural language processing is increasingly 
used to more efficiently analyze large volumes of unstructured 
EHR data but such techniques are still evolving.

Patient registries (i.e., disease or product registry), on the other 
hand, often contain standardized and longitudinal information 
about patients with specific diseases (e.g., DMD) or who received 
specific therapies (e.g., gene therapy for SCD).70 These data can 
provide insights about changes in outcomes (e.g., patient-reported 
outcomes and physician assessments) over time and on how pa-
tient covariates (e.g., genotypes, phenotypes, comorbidities, prior 
therapies, and concomitant medications) can impact such changes. 
For example, the Collaborative Trajectory Analysis Project (cTAP) 
combines data from multiple registries related to DMD that con-
tain standardized measures such as the North Star Ambulatory 
Assessment taken at regular intervals.71 Data from such patient 
registries are often used in clinical pharmacology to develop phar-
macometric models (e.g., disease progression model), create ex-
ternal control for single-arm studies or in silico (simulated) trials. 
Although patient registries focused on specific diseases or therapies 
may have a much smaller total patient population (e.g., hundreds 
or thousands) than those found in large claims or EHR databases 
(e.g., tens of millions), they may nevertheless represent the single 
largest available data source for that disease or therapy. One par-
ticular limitation of patient registries is that they lack a compara-
ble control group (i.e., patients without the disease or therapy of 
interest); as a result, comparative studies using registry data often 
combine them with other sources for an appropriate control group.
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Table 2  General strengths and limitations of common RWD sources for clinical pharmacology applications

RWD 
source

Major data 
contributors Limitations Strengths Example vendors

Claims 
(Medical 
and 
Pharmacy)

•	 Large, self-
insured 
employers

•	 Commercial 
insurance 
companies

•	 Centers for 
Medicare and 
Medicaid

•	 RWD 
aggregators

•	 Use clinical coding (e.g., ICD-10 diag-
nosis codes) to represent all health 
conditions

•	 ICD codes can have varying degrees of 
predictive value depending on disease 
types or type of stays (outpatient vs. 
inpatient)

•	 Complex data driven definitions some-
times needed to capture actual cases

•	 Patients can be lost to follow-up with 
change in insurance provider

•	 No measure of disease severity unless 
specified in diagnosis code

•	 Represent only health conditions 
deemed relevant for billing purposes

•	 No physician notes (i.e., no unstruc-
tured data)

•	 No information on laboratory test 
results

•	 Limited information on race, ethnicity, 
smoking status, family history, etc.

•	 No over-the-counter or self-pay 
medications

•	 No information about medications 
prescribed but not filled

•	 No information about medications 
administered during inpatient stays

•	 Not representative of all age patient 
ages and third-party payer types

•	 Deaths not captured for majority of 
cases

•	 Very large sample sizes
•	 Include all health conditions and 

diseases
•	 Include all healthcare services 

including procedures, covered by 
third-party payers

•	 Comprehensive longitudinal 
patient history captured

•	 Include all types of healthcare 
providers and care settings

•	 Good representation of work-
ing age adults with employer-
sponsored health insurance

•	 Allow patients to be followed 
over several years

•	 Include information about costs 
of healthcare services

•	 Pharmacy claims include medica-
tion name, formulation, strength, 
route of administration, quantity, 
and days supplied

IBM/Truven 
MarketScan,
IQVIA Pharmetrics 
Plus, Optum 
Clinformatics, 
Komodo

EHRs •	 General EHR 
vendors (e.g., 
Cerner)

•	 Specialty EHR 
vendors (e.g., 
Flatiron)

•	 Large health 
systems (e.g., 
Truveta)

•	 Specialty health 
networks (e.g., 
US Oncology)

•	 Include only health encounters with 
healthcare providers who use specific 
EHR software or are part of specific 
network so there could be unknown 
gaps in patient history

•	 Do not contain information about 
charges or costs of healthcare services

•	 Do not include detailed information 
about health plan coverage status

•	 Information about medications pre-
scribed but not if they are dispensed or 
taken

•	 Self-reported health information (e.g., 
medications used, immunization  
history) may be inaccurate or missing

•	 Detailed information in clinical notes 
and unstructured data may not be 
shared

•	 Completeness of mortality data 
variable

•	 May include information about 
patient demographics (e.g., race, 
ethnicity, marital status)

•	 May include information about 
lifestyle (e.g., smoking, alcohol)

•	 May include vitals (e.g., blood 
pressure, BMI) and physical 
examination findings

•	 May include basic laboratory 
tests (e.g., metabolic panel) 
but not advanced tests (e.g., 
genotyping)

•	 May include clinical information 
beyond ICD-10 diagnosis codes

•	 May include information about 
over-the-counter medications

•	 May include reason why medica-
tion was prescribed

•	 May provide more information 
on medications administered in 
hospital settings

•	 May provide information about 
outcomes from clinical notes

•	 May contain genomic/molecular 
test results

•	 Multimodal EHRs contain clini-
cal, genomic, and transcriptomic 
data appropriate for precision 
medicine or targeted drug 
development

Optum Panther, 
Flatiron Health, 
TriNetX, Clinical 
Practice Research 
Datalink (UK), 
Ontada iKnowMed, 
ConcertAI, 
Multimodal EHR 
(e.g., Tempus 
Labs)

 (Continued)
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Given these tradeoffs, when selecting a source of RWD for 
clinical pharmacology purposes, it may be necessary to com-
bine information from multiple data sources to answer all re-
search questions. However, this process can be challenging 

for biopharmaceutical companies because RWD are generally 
de-identified by data vendors prior to being shared. The data 
vendors (e.g., IQVIA and Optum) who have access to patient 
identifiers (e.g., name, date of birth, and health plan identifier) 

RWD 
source

Major data 
contributors Limitations Strengths Example vendors

Patient 
disease or 
treatment 
registry

•	 Clinical 
research 
networks

•	 Academic 
health centers

•	 Commercial 
vendors (e.g., 
OM1)

•	 Private-public 
partnerships 
(e.g., Critical 
Path Institute)

•	 Data and patient population captured 
depends on the original purpose/proto-
col of the registry

•	 May not be suitable to use for other 
purposes

•	 May not provide sufficient representa-
tion of a broad patient population

•	 May have slow process, long wait time
•	 Lack data on comparator groups: no 

controls for disease registries and no 
comparator data for drug registries

•	 Important data elements (drug/con-
comitant medication dosing, duration, 
interruption data) may be missing 
unless registry development is not 
protocol or research hypotheses driven

•	 May represent single largest 
source of data for rare diseases

•	 May have standardized data col-
lection instruments and methods

•	 May offer good longitudinal 
follow-up

•	 May offer more detailed health 
information (e.g., disease sever-
ity) than claims or EHR

•	 May span across regions and 
countries

•	 Data collection is usually dis-
ease or drug focused and more 
comprehensive and granular

ImproveCareNow 
registry, 
Cystic Fibrosis 
Foundation 
Registry, 
International 
Collaborative 
Gaucher Group 
Gaucher Registry, 
Collaborative 
Trajectory Analysis 
Project

BMI, body mass index; EHR, electronic health record; ICD-10, International Classification of Disease-10th revision; RWD, real-world data.

Table 2  (Continued)

Table 3  Common data elements found in different sources of RWD for clinical pharmacology applications

Category Variable

Claims

EHRMedical Pharmacy

Patients Age X X X

Sex X X X

Race/ethnicity ? ? ?

Insurance coverage/type X X

Family history X

BMI X

Healthcare providers Identifier ?

Specialty X X

Location X ?

Encounter Date X X

Type (e.g., inpatient, outpatient) X X

Procedure codes X X

Diagnosis codes X X

Prescription medication Generic/brand name X X

Description (e.g., strength, formulation) X X

Quantity (e.g., number, days supply) X

Indication (reason for prescribing) X X

Clinical records Measurements (e.g., vitals) X

Observations (e.g., notes) X

Rationale (e.g., reason for prescribing) ?

Diagnostic laboratory Description ?

Code (e.g., LOINC) ?

Results ?

Blank, data generally unavailable; ?, uncertainty of data availability (depending on the source data vendor).
BMI, body mass index; EHR, electronic health record; LOINC, logical observation identifiers names and codes; RWD, real-world data; X, data generally available.
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must therefore be involved with the process of combining RWD 
databases. Traditionally, this was accomplished by licensing mul-
tiple types of RWD (e.g., claims and EHR) from one data vendor 
who would link databases with a common patient identifier prior 
to de-identifying and sharing the data externally. More recently, 
patient tokenization, for example, creation of a unique patient 
identifier that cannot be used to re-identify the patient without 
proprietary software, offers new options to combine sources of 
RWD. For example, companies with tokenization technology 
(e.g., Health Verity and Komodo) can now offer access to differ-
ent types and sources of RWD (e.g., claims and EHRs) that can 
be linked by a common patient token prior to de-identification 
and licensing. As more RWD vendors use tokenization tech-
nology, the number and types of databases that can be linked to 
provide a more comprehensive understanding of patient health 
will increase. Perhaps more importantly, this same tokenization 
technology will also allow biopharmaceutical companies and 
clinical research organizations that generate patient-level data 
in clinical trials to link trial participants to external sources of 
RWD, allowing for hybrid study designs (e.g., clinical trial ex-
tensions with RWD). Furthermore, if combing RWD from mul-
tiple sources is not possible, another potential alternative is to 
design a prospective RWD study and intentionally capture the 
data and information needed in the real-world setting.72

Of note, data quality and completeness issues (e.g., missing data) 
are well-known challenges of using RWD. Because commercially 
available sources of RWD generally contain data where both the 
patient and Healthcare Provider are de-identified, it is generally 
not possible for a user to issue queries to the data provider related 
to incomplete, missing, or questionable data. As a mitigation plan, 
researchers using RWD should be aware of this limitation, ac-
knowledge that it may limit generalizability beyond the study pop-
ulation, perform feasibility analyses to determine the availability 
of specific variables of interest, consider sensitivity analyses to deal 
with outliers (e.g., exclude based on number of standard deviations 
from the mean), or develop methods to impute missing data (e.g., 
last observation carryforward).

Additional considerations and challenges for analyzing RWD 
to inform specific clinical pharmacology related areas (i.e., 
DDIs and organ impairment) are included in Supplementary 
Material S1.

CONCLUSIONS AND FUTURE DIRECTIONS
Recent advances in RWD/RWE have created valuable sources 
of data and information. In addition to evidence from RCTs, 
RWD/RWE have been at the forefront of pharmaceutical inno-
vation and informed decision making across the entire life cycle 
of a drug product including, but not limited to, discovery, clinical, 
regulatory/safety, value and access, and commercial. From the per-
spective of clinical pharmacologists, it is important to seek greater 
understanding and appreciation of the opportunities present at 
the intersection of RWE and clinical pharmacology, in terms of 
both the utilization of RWE to address specific clinical pharma-
cology questions as well as the application of quantitative clinical 
pharmacology approaches to analyze RWD and generate RWE. 
Case examples reviewed and discussed here cover both aspects and 

beyond. Further understanding of the current scope and extent of 
interactions between RWE and clinical pharmacology will help 
guide strategies for broader and more advanced applications in the 
future.

There are several approaches that the clinical pharmacology 
community could adopt to achieve broader and more advanced ap-
plications of RWD/RWE. First, facilitate effective collaborations 
with various functions, including epidemiology/biostatistics, clin-
ical sciences, biomarker/translational sciences, and medical affairs, 
and leverage their expertise in feasibility assessment, RWD source 
selection, patient population identification, and data extraction 
and data cleaning to enable successful use of RWD for evidence 
and insights generation. Ideally, the analysis of RWD should be 
undertaken by a cross-functional team with expertise in different 
domains, as outlined in Table 4. Second, develop user-friendly 
RWD dashboards/interfaces to increase RWD accessibility and 
usage. Furthermore, include RWD/RWE in clinical pharmacology 
and/or MIDD plans at early stages of drug development, along 
with continual updates and assessments throughout the process, to 
increase the impact of RWD/RWE. In addition, engage with the 
health authorities and leverage the FDA’s Advancing Real-World 
Evidence Program to get valuable input and feedback to improve 
the quality and acceptability of RWD/RWE for new intended 
labeling claims.10 With increased awareness, accessibility, and im-
pactful applications of RWD/RWE in clinical pharmacology, we 
can better leverage opportunities for using RWE to address key 
drug development questions from a clinical pharmacology per-
spective in the future.

Table 4  Suggested cross-functional team for RWD project 
design and analysis for clinical pharmacology applications

Function Expertise

Biostatistics Data analysis, study design, and selecting 
appropriate statistical techniques to answer 

research questions

Clinical 
development

Evidence expected from product clinical 
development program and feasibility of 
traditional/prospective data collection

Clinical 
pharmacology

Research question, common data sources, 
expectations from various stakeholders, and 

data interpretation

Data engineering Importing, verifying, and optimizing large 
sources of external data for analyses

Epidemiology Observational research methods and study 
design to minimize bias and confounding

Medical affairs Clinical domain, standards of care, and areas 
of concerns to healthcare providers

Real-world 
evidence

Available data sources from different vendors, 
types of variables they contain, and common/

permitted uses

Regulatory 
affairs

Regulatory guidance related to research 
questions, regulatory precedents for using 

RWD, expectations from regulators

RWD 
programming

Efficient programming approaches to selecting 
and analyzing patient cohort of interest from 

larger RWD sources

RWD, real-world data.
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SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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